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ABSTRACT

Numerical simulations of Ar-Hy and Ar-Ny RF thermal plasmas are
performed to investigate the effective injection location of Hy or
Nog. The difference of the characteristics of plasmas among Hy
injection locations is small. The characteristics of Ar-Ng plasmas

are varied widely by Ng injection locations.

1. INTRODUCTION

RF thermal plasmas have been used for a number of

applications: chemical synthesis, plasma spraying and production of
ultrafine powders. The temperature, flow and concentration fields
in RF plasmas have been calculated to increase the efficiency of
chemical reactions. The modeling of RF thermal plasmas with
chemical reactions is rather scarce. Zhao et al. /1/ presented the
modeling with reactions between SiCly and Hy. McKelliget and EIl-
Kaddah /2/ calculated the plasma fields only with dissociation of
SiCly. Girshick and Yu /3/ reported the simulations of Ar plasmas
with Hy, Nog or Hg on the assumption of chemical equilibrium. The
authors /4/ presented the modeling of Ar-O,y and Ar-Ny plasmas in
consideration of dissociation and recombination rates of the
diatomic gas.

In the present work, numerical simulations of Ar-Hy and Ar-Ny
RF thermal plasmas are performed to investigate the effective

injection location of the diatomic gas.

2. NUMERICAL FORMULATION

The fields of flow, temperature and concentration in an RF
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thermal plasma were calculated by solving the two-dimensional
continuity, momentum, energy and diffusion equations along with the
one-dimensional electromagnetic equations /4,5/. The governing
equations are solved using SIMPLER algorithm /6/. The torch is
made of a quartz tube of 40 mm i.d. and 160 mm long, and the
applied frequency is 4 MHz, the input power is 8 kW.

Six injection locations of Hyg or Ny are considered in the
numerical simulations (see Fig.2):
1) Type A; axial injection from the outer slit at the torch top.
) Type B; axial injection from the inner slit at the torch top.
3) Type C; axial injection from a tube at x = 100 mm at the center.
4) Type D;; radial injection at x = 60 mm (upstream from the coil).
5) Type Dg; radial injection at x = 90 mm (midpoint of the coil).
6) Type E; axial injection from the center of the torch top.

Argon issues at 20 liters/min, hydrogen or nitrogen issues at
5 liters/min from a slit of 2 mm-width except type E. The
injection slit width in type E is 0.5 mm for Hy injection, and I mm
for Ng injection, because the high injection velocity is necessary

to overcome the recirculation eddy in RF thermal plasmas.
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respectively. The relatively low temperature and degree of
dissociation at the center with type C results from the short
residence time of Hy. However, the high temperature and high
degree of dissociation are obtained with type E in spite of the
short residence time. The low dissociation energy of hydrogen
(432.1 kJ/mol) leads to the high degree of dissociation.

The distributions of conductive heat flux to the torch wall
are presented in Fig.5. The high heat flux in the coil region is
attributed to the high plasma temperature. The heat flux in the
coil region with type A or B is relatively low because the plasma
temperature near the wall is decreased by Hy dissociation.

The average enthalpy and degree of dissociation at the torch
exit are shown in Fig.6. The high enthalpy and high degree of
dissociation are obtained for all injection locations. Type E 1is
the best injection location, but the differences of the enthalpy

and degree of dissociation among Hy injection locations are small.
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Fig.2 Isotherms (arrows indicate H2 injection location).
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3.3 An Argon-Nitrogen Plasma

The radial profiles of the temperature and the degree of
dissociation of nitrogen at the torch exit are shown in Figs.7 and
8, respectively. The low temperature and degree of dissociation at
the center with type C and E are attributable to the short
residence time of nitrogen. The high dissociation energy of
nitrogen (941.6 kJ/mol) brings about the low degree of dissociation
for all injection locations.

The distributions of conductive heat flux to the torch wall
are presented in Fig.9. The differences of the heat flux among Ny
injection locations are small.

The average enthalpy and degree of dissociation at the torch
exit are shown in Fig.10. The highest enthalpy and the highest
degree of dissociation can be obtained by use of type A. The long
residence time of nitrogen is required for the high degree of

dissociation owing to the high dissociation energy of nitrogen.

4. CONCLUSION

Numerical simulations of Ar-Hy and Ar-Nj RF thermal plasmas
were performed to investigate the effective injection location of
Hyg or No. The differences of the characteristics of the RF plasmas
among Hy injection locations are small. The characteristics of the

Ar-Ny RF plasma are varied widely by Ny injection locations.
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