# Plasma polymerized acrylic acid and formation of COOH-rich polymer layers in the presence of CO<sub>2</sub> gas

<u>A. Fahmy<sup>1,2</sup> and A. Shönhals<sup>2</sup></u>

<sup>1</sup> Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, EG-11884 Cairo, Egypt <sup>2</sup> BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, DE-12200 Berlin, Germany

**Abstract:** In contrast to most of the existing literature on plasma polymerization of acrylic acid (AA), not only the chemical structure of the deposits were studied, but also a new way to obtain COOH-rich surfaces. Therefore, acrylic acid/ $CO_2$  polymer films with a thickness of ca. 150 nm were deposited in the pulsed plasma regime onto polyethylene and aluminium substrates.

Keywords: polyacrylic acid, -COOH-rich, plasma polymerization, dielectric properties

## 1. Introduction

Plasma polymerized acrylic acid has been extensively studied in order to obtain coatings with a high density of carboxylic acid (-COOH) groups, especially in the framework of biological applications [1]. Carboxylic groups are sensitive to pH changes of the solution. Therefore, it could be used in drug delivery systems to release a certain amount of a drug in an environment characterized by a specific pH value [2]. Plasmapolymerized acrylic acid coatings are expected to be beneficial for a wide range of applications. However, their implementations are hindered by their low functionality and irregularity [3]. Different studies have shown that COOH-rich surfaces can be successfully obtained by plasma polymerization of acrylic acid [1, 4, 5] but the regularity of films and the functionality are still not good enough. Thus the effect of  $CO_2$  gas on the regularity and functionality of plasma deposited polyacrylic acid was studied in details in this contribution.

## 2. Experimental

The deposition experiments were achieved in a stainless steel reactor Ilmvac, Germany with volume of 50 dm<sup>3</sup> with a pulsable radio-frequency (rf 13.56 MHz) generator with an automatic matching unit. For more details see ref [6]. The total flow rate (F) is adjusted to 34 g /h. The fixed plasma parameters were a duty cycle (DC) of 0.5, a pulse frequency of 1 kHz, an effective power of 50 W and the pressure was kept constant at 10 Pa. The studied molar fractions  $X_A$  of AA compared to CO<sub>2</sub> are: 75, and 100, where  $X_A$  is defined as

$$X_A = \frac{n_A}{n_{total}}$$

where  $n_A$  and  $n_{total}$  are the number of moles of AA and total number of moles in the mixture, respectively.

## 3. Results and Discussion

#### 3.1. XPS measurements

XPS cannot be used directly to determine the number of the carboxyl acid group –COOH, therefore, a Trifluoroethanol derivatisation (TFE) labelling technique was used to differentiate between the functional groups – COOH and –COORCF<sub>3</sub> according to the protocol given in detail in Ref. [5, 7]. Trifluoroethanol is used to esterify the acid groups, but not the ester groups:

## R-COOH + CF<sub>3</sub>CH<sub>2</sub>OH → R-COOCH<sub>2</sub>CF<sub>3</sub>.

Thus, the acid group is labeled with fluorine which causes the  $-COOCH_2CH_3$ . This peak shifts to a higher binding energy compared to the other components of the C 1s peak. Through this, the fraction of -COOH within the -COOR peak can be obtained by curve fitting of the C 1s peak (Fig. 1).



Fig. 1. C 1s peaks of the AA/  $CO_2$  sample deposited on PE with molar ratio  $X_A = 75\%$  after derivatization with TFE.

The concentration of -COOH groups was increased in the acrylic acid deposited polymer layer in presence of 25% of CO<sub>2</sub> gas by ca. 50% (Fig. 2).



Fig. 2. Concentration of COOH groups per 100 carbon atoms for  $AA/CO_2$  plasma deposited polymer films on PE.

## 3.2. FTIR spectroscopy

Fig. 3 represents the FTIR spectra of coatings deposited for AA/CO<sub>2</sub> ( $X_A = 75\%$ ) compared to pure PAA ( $X_A = 100\%$ ). Both spectra are quite similar. FTIR spectra of the deposited films show a very strong absorption band at ~1710 cm<sup>-1</sup> which can be assigned to C=O stretching vibrations of carboxylic acids. The FTIR spectra also contain a very broad absorption band in the region 3600 - 2400 cm<sup>-1</sup>, which can be attributed to OH stretching vibrations in carboxylic acids (Fig. 3) [8].



Fig. 3. FTIR spectra of AA/CO2 plasma deposited polymer films on aluminum substrate for 100% and 75% PAA.

#### 3.3. Broadband Dielectric spectroscopy (BDS)

A general overview about the dielectric relaxation behaviour of polymers can be found in textbooks [9, 10]. Fig. 4 give the dielectric loss for plasma PAA with  $(X_A=100\%)$  versus frequency and temperature in a 3D representation as example.

One relaxation process indicated by a peak in the dielectric loss is observed at low temperature which is called as  $\beta$ -relaxation. As expected it shifts to higher frequencies with increasing temperature. For higher temperatures the dielectric loss increases with frequency

and temperature without any indication of a further relaxation process. That increase of the dielectric loss is related to conduction phenomena related to the drift motion of charge carriers.



Fig. 4. Dielectric loss  $\epsilon$ ' vs. frequency and temperature in a 3D plot for PAA samples with  $X_A = 100\%$  representation as example.

In the case of AA/CO<sub>2</sub>  $\beta$ -relaxation is shifted to higher frequencies than for that pure PAA at the same temperature. This indicates structural changes of PAA in presence of CO<sub>2</sub> gas.

The data are analysed by fitting the HN-function to the data. The contribution of the electrodes is taken into as described in ref. [5]. Thus, the whole fit function reads as:

$$\varepsilon''(f) = \operatorname{Im}\left\{\frac{\Delta\varepsilon}{(1 + (if/f_0)^{\beta})^{\gamma}}\right\} + A * f \quad (1)$$

where  $\beta$  and  $\gamma$  are fractional parameters ( $0 < \beta \le 1$  and  $0 < \beta \gamma \le 1$ ) characterizing the shape of the relaxation time spectra,  $f_0$  is a characteristic frequency related to  $f_p$  and A is a fitting parameter which is mainly due to  $\tau_{\text{Res}}$ .

The temperature dependence of the relaxation rate  $f_{p,\beta}$  of the  $\beta$ -relaxation is linear versus inverse temperature. Therefore, it can be described by the Arrhenius equation:

$$f_{p,\beta} = f_{\infty} \exp(-\frac{E_{A}}{k_{B}T})$$
(2)

where  $f_{\infty}$  the pre-exponential factor and  $E_A$  is the activation energy. The estimated values of the activation energy are 66.1 kJ/mol and 55.9 kJ/mol for  $X_A = 100\%$  (pure PAA) and  $X_A = 75\%$  respectively. The values are in the order of magnitude of localized processes where the activation energy for  $X_A = 100\%$  is essential higher than that of  $X_A = 75\%$ . The reason for the different behaviour is unclear up to now and requires additional investigations.

## 4. Conclusion

Thin PAA films were deposited by pulsed plasma polymerization on different substrates (organic and inorganic). The structure-property relationships of acrylic acid/CO<sub>2</sub> polymers were studied by various techniques and probes.

It was found that in presence of  $CO_2$  gas in the precursor mixture, a polymer network is obtained with an increasing abundance of branched groups. Those groups are accompanied by a decrease of activation energy and cross-linking. However, a structure of polyacrylic acid with higher concentration of COOH groups than that for pure one was obtained.

## 5. References

- L.J. Ward, W.C.E. Schofield, J.P.S. Badyal, A.J. Goodwin and P.J. Merlin. *Chem. Mat.*, 15, 1466 (2003)
- [2] E. Sardella, P. Favia, E. Dilonardo, L. Petrone and R. d'Agostino. *Plasma Process. Polymers*, 4, S781 (2007)
- [3] D. Hegemann, E. Korner and S. Guimond. *Plasma Process. Polymers*, **6**, 246 (2009)
- [4] R. Morent, N. De Geyter, M. Trentesaux, L. Gengembre, P. Dubruel, C. Leys and E. Payen. *Appl. Surf. Sci.*, **257**, 372 (2010)
- [5] A. Fahmy, R. Mix, A. Schönhals and J. Friedrich. *Plasma Process. Polymers*, **8**, 147 (2011)
- [6] A. Fahmy, A. Schönhals and J. Friedrich. *J. Phys. Chem. B*, **117**, 10603 (2013)
- [7] M.R. Alexander, P.V. Wright and B.D. Ratner. *Surf Interf. Anal.*, **24**, 217 (1996)
- [8] G. Socrates. Infrared and Raman Characteristic Group Frequencies - Tables and Charts. (Chichester: John Wiley & Sons, Ltd.) (2001)
- [9] N.G. McCrum, B.E. Read and G. Williams. *Anelastic and Dielectric Effects in Polymeric Solids*. (New York: Wiley, reprinted by Dover Publications) (1991)
- [10] F. Kremer and A. Schönhals. *Broadband Dielectric* Spectroscopy. (Berlin: Springer) (2002)