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Abstract:  Real-time diagnostics of atmospheric pressure plasma jets (APPJs) can be 
challenging due to need for complicated experimental setups or time-consuming data 
processing. Ιn this work, we instead utilize large datasets of easy-to obtain measurements of 
information-rich signals, such as optical emission spectra and electroacoustic emission, to 
obtain real-time estimates of operation-relevant parameters. 
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1. Introduction 
Cold atmospheric pressure plasmas (CAPs) are a 

class of cold plasma devices increasingly used in medical 
applications and materials processing [1]. However, 
CAPs are extremely sensitive to disturbances. For 
example, discharge characteristics can considerably vary 
with changing external conditions, such as ambient 
humidity [2], and the properties of the treated substrate 
[3]. Moreover, CAPs can undergo mode transitions, 
which substantially change the discharge properties of 
the plasma along with its corresponding effects [4]. It is 
therefore of key interest to have effective real-time 
diagnostics of the discharge parameters. Particularly in a 
medical context, the repeatability of the treatment 
essential. This further motivates a need for effective 
diagnostics of disturbances so that deviations from 
nominal operating conditions can be monitored and 
mitigated. 

Common methods of direct diagnostics can be 
limited for implementation in real time. Methods for 
such as laser-induced fluorescence (LIF) [5], mass-
spectroscopy [6], and spontaneous Raman scattering [7] 
can yield crucial information about the discharge 
properties including species concentrations and gas 
temperatures. However, such methods rely complicated 
and expensive experimental setups which can be difficult 
to reconcile with flexible hand-held treatment methods 
commonly used in plasma medicine. On the other hand, 
easy-to-obtain discharge emissions signals such as 
optical emission spectra (OES) and electroacoustic 
emission are rich in information but are difficult to 
interpret. For example, obtaining rotational and 
vibrational temperatures from OES requires generation 
and fitting of synthetic spectra [8]. Due to the numerous 
fitted parameters this kind of analysis can take several 
seconds up to a few minutes, deterring its use in real-
time.  

Machine learning (ML) methods have found 
success in variety of applications including natural 
language processing, image recognition and real-time 
diagnostics of low-pressure etching [9]-[11]. ML 
methods leverage large datasets to discover and 
compactly represent relationships between variables 
[12]. In this context, the information-rich emission 
signals from CAPs are particularly suitable for potential 
ML applications. Therefore, using ML models otherwise 
difficult-to-obtain quantities can be estimated. 

In this work, we demonstrate the applicability of 
ML methods for real-time diagnostics of CAPs. Utilizing 
ML methods, we relate optical emission spectra to 
quantities obtained by independent measurements or by 
processing large quantities of data offline. We then 
demonstrate the obtained ML models can be used for real 
time diagnostics of operation-relevant parameters such 
as rotational and vibrational temperatures and 
distinguishing between dielectric and conductive 
substrates. 

 
2. Experimental Setup and Methods 

 
Figure 1 - Experimental atmospheric pressure plasma jet (APPJ) 
setup with data acquisition signals shown in red and actuation 
signals shown in blue. 



We utilize the atmospheric pressure plasma jet 
(APPJ) system depicted in Figure 1 for experiments. The 
APPJ is excited with AC voltage at 20 kHz.  A PI 
controller maintains the dissipated power, manipulating 
the applied voltage in a range of 6-10 kV peak-to-peak. 
The He flow rate is adjusted using a mass flow controller 
at range of 1-3 slm. A borosilicate microscope cover slip 
is placed under the discharge as the dielectric substrate, 
and a metal plate doubles as ground and the conductive 
substrate. An, optical emission spectrometer (Ocean 
Optics USB2000+) is utilized to collect spectra. A 
microcontroller (Arduino UNO) and a single board 
computer (Raspberry PI) are used to coordinate and 
automate actuation and data collection.  

We employ two basic ML methods: least absolute 
shrinkage and selection operator (LASSO) linear 
regression [13] for estimating rotational and vibrational 
temperatures and, k-Means clustering [14] for 
classifying substrate type. To train the ML models we 
utilize a data-set consisting of 1500 samples of 
normalized OES peaks of N2(C-B) transition (364-390 
nm), collected under varying operating power, flow and 
substrate type. We analyzed the OES peaks, offline using 
MassiveOES [15] to fit rotational and vibrational 
temperatures. Together, the fitted temperatures and the 
OES spectra are used to fit a linear regression model to 
predict rotational and vibrational temperatures in real-
time. The OES spectra alone are used in the k-Means 
clustering algorithm to classify the substrate type. 

 
3. Results 

a. Rotational and Vibrational Temperature 
Estimation  

  We utilize a linear model with polynomial basis 
of third order for the estimation of rotational and 
vibrational temperatures. After the model is fitted, its 
predictive performance is evaluated against an 
independent test dataset collected over a range of  

 

 
Figure 2 – Operating conditions (applied power, He flow and 
substrate type) used to test the linear regression algorithm. 

 
Figure 3 – Rotational and vibrational temperatures fitted using 
Massive OES and predicted using linear regression. 

operating conditions shown in Figure 2. The 
corresponding estimates of rotational and vibrational 
temperatures predicted by the linear regression model 
are shown in Figure 3 alongside values fitted offline with 
Massive OES. 

Figure 3 shows that the linear regression 
algorithm is capable of predicting the rotational and 
vibrational temperatures in real-time with reasonable 
accuracy. We observe some notable deviations around 
sampling instants 210-250 where the flow is decreased 
while the applied power is increased. The increase in 
noise observed under these conditions can be attributed 
to the discharge moving on the metal substrate causing 
OES probe to fall out of focus. We quantify the 
performance of the linear regression model with an R2 
value of 0.79. 

b. Substrate type detection 
 We utilize k-Means clustering to cluster the OES 
spectra collected into two distinct classes corresponding 
to dielectric and conductive substrates. k-Means 
algorithm describes two clusters in terms of their canter 
points or centroids. Figure 4 shows that the centroids of 
the OES spectra clusters corresponding the glass and 
metal substrates.   

  

Figure 4 – Centroids of OES spectra obtain from the k-Means 
algorithm corresponding to glass and metal substrates.  



 

 

Figure 5 – Performance of the k-Means algorithm in detecting 
glass and metal substrates in real time. 

 Clusters determined with the k-Means algorithm 
are used in real-time to assign new OES measurement to 
either of the two classes. In this way, the substrate type 
is detected in real-time. Figure 5 shows the performance 
of the k-Means algorithm in determining the substrate 
type as the APPJ is translated back and forth across the 
dielectric and conductive substrates. Notably, the 
substrate type is detected with perfect accuracy. We note 
that the transition between glass and metal substrate 
results in a drastic change in the discharge properties and 
therefore is comparatively easy to detect. Nevertheless, 
this demonstration still serves to show how discrete 
events can be detected in real time using ML methods.  
 

4. Conclusions and Future Work 
We demonstrate the potential for ML methods for 

real-time diagnostics of CAPs. The relatively simple ML 
algorithms we have used achieve remarkable performance 
in estimating rotational and vibrational temperatures of the 
discharge in real time and in detecting glass and metal 
substrates 

  ML methods have great potential for applications in 
CAPs. More specifically, they can be used to correlate 
other difficult-to-obtain quantities such as species 
concentration and electric field strengths to easily obtained 
measurements such as optical and electroacoustic 
emissions. A major challenge in broad application of ML 
methods is the availability of large datasets. We note the 
importance of automation strategies for data collection and 
actuation for constructing large dataset enabling the use of 
ML methods. 

 Effective real-time diagnostics can be used to 
mitigate the variabilities observed in the discharge in real-
time improving the reliability and repeatability of 
operation. ML methods can further be utilized to obtain 
complex input-output models of the discharge and help 
discover complex relationships among variables and 
uncover underlying physical phenomena. In a medical 
context, data-driven ML methods can be instrumental in 
developing patient-specific treatment protocols. 
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