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Abstract: Plasma processes demand many external parameters to be tuned. For the better 
tuning, process data of plasma CVD of hydrogenated amorphous silicon films is analysed by 
two methods: sparse principal component analysis and ensemble learning method. These 
analyses are useful not only for identifying key external parameters and suggesting better 
experimental conditions, but also for giving predictive insights into experimental results. 

Keywords: machine learning, plasma CVD, ensemble learning, sparse principal component 
analysis 

1. Introduction
In semiconductor manufacturing, plasma processes of

CVD, sputtering, and etching, play central roles. These 
processes have dozens of tuning parameters and multiple 
objective variables for product evaluation. Relations 
between the tuning parameters and objective variables are 
highly complicated and thus are hard to be interpreted. 
Since plasma process has a non-linear relationship between 
these tuning parameters and plasma parameters and a 
complex relationship between the plasma and material 
interface/property of material, to identify important 
experimental tuning parameter for the quick production of 
the desired material requires considerable efforts by well-
established researchers and can be a bottleneck of the 
research and development.   

In general, plasma processes demand many external 
parameters to be tuned via trial-and-error, and the number 
of tuning parameters can be enormous in some practical 
cases. Physical and chemical parameters of reactive plasma 
in a reactor and products also have many characteristics. In 
such cases, data-based statistical or machine learning 
approach offers a novel way for tuning plasma processes in 
a short period. 

In this study, the estimation of key tuning parameter in 
plasma process are partially overcome by utilizing a sparse 
principal component analysis (SPCA) [1,2] and an 
ensemble learning algorithm which is one of the machine 
learting method. We used one of the ensemble learning, 
gradient boosting regression trees (GBDT) [3], for 
estimating feature importance. In this study, we applied the 
method to plasma enhanced chemical vapor deposition for 
fabricating hydrogenated amorphous silicon (a-Si:H) solar 
cells [4] and present the demonstration of identification the 
key parameter thorough these two method. 

2. Method
2.1 Film Deposition Process

First, we explain briefly the experimental setup used for
the film deposition process [4]. This plasma CVD reactor
employs a multi-hollow electrode, frequently together with
a cluster eliminating filter. The external parameters are the
SiH4 flow rate, H2 flow rate, substrate temperature, gas

pressure, film thickness, RF power, RF frequency, distance 
between electrode and substrate, presence/absence and 
type of the cluster eliminating filter, presence/absence of a 
100 mesh, and type of multi-hollow electrode. The last 
three parameters are discrete, and the rest are continuous. 
Under each experiment conditions one film was deposited, 
and then the film was employed to fabricate16 or 7 solar 
cells.  

2.2 Machine learning method 
PCA(:principal component analysis) [1] is a method of 

linear transformation of high dimensional data. It 
transforms axes of data to new axes called principal 
components (PC1, PC2, …). PCs remain orthogonal and 
numbered in descending order of data variance along the 
axes. For example, if a shape of data is bread-like in 3D 
space, the variance along PC1 is very high, while ones 
along PC2 and PC3 are small. In such cases, we may ignore 
PC2 and PC3, and regard the data as one-dimensional. In 
this way, PCA can be used for dimensional reduction. 
We describe sparse principal component analysis (SPCA) 

[2]. As the name suggests, SPCA is a family of PCA. The 
word “sparse” means “mostly zero”. For example, consider 
a linear combination a0x0+ a1x1+⋯+ anxn and if the 
coefficients a0, a1…an are sparse, that means only a small 
number of them are non-zero. SPCA gives sparse 
estimations of PCs. This is helpful when you are trying to 
interpret principal components. Sparsity of loadings can be 
controlled by changing a regularization parameter. 
We applied for estimating key plasma parameter using the 

gradient boosting regression trees (GBRT), which is one of 
ensemble learning. GBRT is an improved boosting 
algorithm for regression and classification problems.  

3. Results and Discussion
3.1 Reslts of PCA/SPCA

Figure 1 shows the Eigenvalues of the normal PCs. Each
of the first three components has an eigenvalues more than 
1 and their sum is 91% of all variation of the data. The right 
side of Table 1 shows the loadings of the SPCA’s 
components. PC1 has high correlation with FFinitial, 
𝜂stabilized, and “Degradation Ratio”. Thus, PC1 is interpreted 
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as the film performance axis as a solar cell. PC2 has high 
correlation with 𝜂initial , currents, and small correlation with 
“Degradation Ratio”, therefore PC2 is the initial 
performance axis. PC3 is the voltage related axis.  Figure 
2 shows PC1 distributions against four external parameters. 
These results show that, the cluster eliminating filter, SiH4 
flow rate, reactor pressure, and distance between substrate 
and electrode play key roles in determining the conversion 
efficiency of a-Si:H solar cells. From the viewpoint of 
physical mechanisms, these four parameters are reasonable 
as follows. First, clusters contribute mainly to SiH2 bond 
formation in films and tend to enhance the light induced-
degradation. The cluster eliminating filter reduces this 
contribution and hence PC1 depends on the filter type as in 
Fig. 2(a). Note that “filter type 0” is “w/o filter” and the 
rest numbers correspond to fineness of filter. Secondly, the 
SiH4 flow rate is inversely proportional to the gas residence 
time in the plasma region, thus the cluster growth rate 
decreases with increasing the flow rate and hence PC1 
depends on the SiH4 flow rate as in Fig. 2(b). Thirdly, the 
distance between substrate and electrode affects cluster 
growth rate, leading to the results in Fig. 2(c). Finally, the 
pressure play at least two major roles: 1) the higher 
pressure gives the longer gas residence time leading to the 
faster growth of clusters, and 2) the higher pressures brings 
about the less diffusive transport of clusters to the substrate 
set in the upstream region. According to the balance 
between these two reverse effects, there is an appropriate 
pressure to obtain the highest PC1.  
Based on these results, we have designed new 

experiments focusing on the SiH4 flow rate dependence [5]. 
SiH2 bond density in a-Si:H films nonlinearly decreases 
with increasing the SiH4 flow rate. Eventually, the 
experiments realized a lower SiH2 bond density  than 
previous ones. It should be noted that a-Si:H films with the 

lower SiH2 bond density tends to show lower light-induced 
degradation. 
PCA and SPCA analyses are useful not only for 

identifying key external parameters and suggesting better 
experimental conditions, but also for giving new insights 
into experimental results. 
 
3.2 Reslts of GBDT 
Figure 3 shows the feature importance of plasma CVD of 

a-Si:H films. The target value is the stabilized efficiency. 
These results are consistent with our previous findings that 
nanoparticles and high order silane related radicals tend to 
reduce the stabilized efficiency. Based on these results we 
have selected new experimental conditions and have 
succeeded in realizing highly stable a-Si:H solar cells. 
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Fig. 2.  Box plots showing changes of distributions 
regards to varying specific external parameters along PC1 
obtained with SPCA. Dots represent data points. Each x-
axis is (a) filter type, (b) silane flow rate, (c) distance 
between electrode-substrate, (d) pressure of reactor 
respectively. 

 

Fig. 1. Eigenvalues of normal PCA’s components. 

Fig. 3.  Feature importance of plasma CVD of a-Si:H 
estimated by GBRT model. 


