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Abstract: Methane pyrolysis can be used for the large-scale production of hydrogen and 

valuable carbon co-products. In order to optimize the process, we are developing an 

integrated model of methane pyrolysis which consists of several sub-models including gas-

phase chemistry, soot formation, nucleation and growth of catalytic nanoparticles from metal 

vapor, and carbon nanotube synthesis on the catalyst particle surface.  
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1. Integrated chemical mechanism of methane pyrolysis

and soot formation

Methane pyrolysis has demonstrated its potential for

large-scale production of hydrogen (a.k.a. turquoise 

hydrogen) and valuable carbon co-products such as carbon 

black [1] and carbon nanotubes (CNTs) [2]. We are 

focusing on the CNT synthesis as CNTs are the more 

valuable carbon product. In CNT synthesis from methane 

pyrolysis, it is important to avoid soot formation because 

soot is an un-desirable by-product that consumes carbon 

from the feedstock and contaminates the product. The 

search for optimal methane pyrolysis conditions (reactor 

inlet gas mixture composition, temperature profile, etc.) 

requires a reliable chemical model describing both gas-

phase chemistry and soot formation. Multiple chemical 

reaction sets for methane pyrolysis can be found in 

literature (e.g. [3, 4, 5, 6]). We have implemented these 

reaction sets in a plug flow reactor model in Cantera 

chemical solver [7] and compared such obtained modeling 

results to available experimental data on methane pyrolysis 

in stationary and plug-flow reactors [8, 9]. The so-called 

ABF model [4] showed good agreement with the 

experimental data for methane conversion in a heated-wall 

flow reactor [8], as shown in Fig. 1, similar to previous 

studies [10]. 

However, agreement between the modeling results and 

experimental data is only observed when soot or other 

forms of solid carbon do not form. When solid carbon (soot 

or other structures) formed, there was a noticeable 

disagreement between the ABF modeling results and 

experimental data (e.g., the model overpredicted the 

formation of acetylene because carbon conversion to soot 

was not accounted for). It is clear that the mechanism needs 

to be expanded to incorporate better modeling of soot 

formation. 

Soot particles form as agglomerates of large polycyclic 

aromatic hydrocarbons (PAHs) of 2-3 nm in diameter [11, 

12]. There are multiple chemical mechanisms of small 

PAH formation (up to A7, i.e., coronene) available in 

literature, see, e.g., reviews [13, 14]. Most of these models 

are based on so-called hydrogen abstraction carbon (or 

acetylene) addition (HACA) [15] and hydrogen abstraction 

vinylacetylene addition (HAVA) [16] mechanisms. 

Fig. 1. Methane conversion degree as a function of 

residence time for several flow temperatures in the flow 

of methane premixed with hydrogen (H2:CH4 = 2:1) in a 

heated wall reactor [8]. Black lines – experimental data, 

color lines – modeling results using the ABF mechanism. 

Fig. 2. The fraction of acetylene converted to soot in the 

flow in the flow of 30 000 ppm C2H2 diluted in N2 in a 

heated wall reactor [18] as a function of temperature. 

Black line – experimental data, blue line – modeling. 

We have integrated these models with the ABF 

mechanism and expanded them to include most prominent 

PAH species up to A40 (~2 nm in diameter) using forward 

reaction rates from HACA and HAVA mechanism 

reversed reaction rates based on thermodynamic data from 

NIST [17]. The predictions of the resulting mechanism are 

compared with experimental data [18] for acetelene 

conversion to soot in Fig. 2. In the model, soot was defined 

as the total of all PAH species larger than benzene. 
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2. Kinetic model of metal nanoparticle nucleation and 

growth  

Nanoparticles of liquid metal serve as catalysts for the 

synthesis of carbon nanotubes (CNTs). In floating catalyst 

carbon vapor deposition (FCCVD) reactors, catalyst 

nanoparticles are usually synthesized directly in the flow 

of a cooling gas containing metal vapor, as in Refs. [19, 

20]. Obtaining nanoparticles of a certain size with a narrow 

size distribution is a crucial step in the selective synthesis 

of CNTs of desired diameter, chirality, and number of 

walls. 

The process of liquid metal nanoparticle formation from 

a supersaturated vapor is typically divided in two stages:  

nanoparticle nucleation (a.k.a. a nucleation burst) and 

coagulation, which is longer. Agglomeration also occurs 

later on after the particles solidify. It is known that 

condensation in a cooling vapor does not happen 

immediately when the temperature reaches the 

condensation temperature. There is a time lag for the vapor 

to reach a certain degree of supersaturation after which 

condensation happens rapidly with vapor density dropping 

and particle (cluster) density rising (see shaded area in Fig. 

3) – hence the name ‘nucleation burst’. The delay in the 

cluster formation occurs due to the nucleation energy 

barrier: particles below some critical size are 

thermodynamically unfavorable. This barrier becomes 

smaller as the supersaturation increases, eventually leading 

to a nucleation burst. The size of particles formed at the 

nucleation stage depends on both the cooling rate and the 

initial partial pressure of the metal vapor. The final size of 

the nanoparticles after the coagulation phase depends on 

the initial vapor density and the residence time (how long 

the particles collide with each other to form larger and 

larger coagulates until they solidify). 

Dynamics of the size distribution of forming particles 

can be described by the so-called General Dynamics 

Equation (GDE) [21]. This is an integro-differential 

equation that is difficult to solve. There are simplified 

models of condensation based on the moments of the 

particle size distribution function. The most accurate 

model of nucleation was developed by S. Friedlander  [22]. 

Based in this model, we have derived an analytical solution 

[23] for the nucleation delay, average nanoparticle size, 

and dispersion of the size distribution function after the 

nucleation burst as a function of cooling rate and vapor 

density (assuming linear gas cooling with time). These 

analytical expressions are a useful tool for quick 

assessment of nanoparticle properties. However, the 

Friedlander’s nucleation model does not account for the 

coagulation of nanoparticles nor the smallest subcritical 

nanoparticles (i.e., the formation of nanoparticles that have 

not yet surpass the nucleation energy barrier). 

Even though a simple nucleation model coupled with a 

mono-disperse coagulation model (as we have done prior 

in the modeling of carbon nanoparticle formation in the 

effluent of an arc discharge [24]) can predict average 

nanoparticle size with an error of about a factor of three. 

For the synthesis of CNTs with the desired characteristics, 

more precise knowledge of the nanoparticle size 

distribution is required. 

In this paper, we present results obtained with a new 

computational condensation code. This code solves the full 

General Dynamics Equation (GDE) for the particle size 

distribution function, accounting for both nucleation and 

coagulation of particles. Coagulation is modeled in the free 

molecular regime because the size of the forming particles 

(several nm) is much smaller than the mean free path 

(~1 µm). The model is 0D (i.e., it is a plug-flow model). 

Unlike its predecessors (NGDE code [25] or the 

Friedlander’s nucleation model, which do not consider 

particles below critical size), this code resolves the particle 

size distribution in the whole range of particle sizes. The 

model starts from monomers and does not limit the size of 

the computational grid. A special “non-diffusive” 

numerical scheme is used to avoid “smearing” of the 

particle size distribution from  numerical diffusion that is 

typical in the NGDE scheme. Technical details of the 

numerical solution procedure will be provided in ensuing 

publications. 

   

Fig. 3. Time history of vapor density (a) and particle 

density (b) during condensation of aluminum vapor. 

In Fig. 3, modeling results obtained with our code (blue 

line) and with the Friedlander’s model (orange line) are 

compared for the condensation of aluminum vapor starting 

from saturation conditions at 1,500°C with a constant 

cooling rate of 106 K/s. As can be seen from Fig. 4a, gas 

density starts decreasing much earlier in the full GDE 

solution obtained with our code compared to the 

Friedlander’s model; consequently, the nucleation burst is 

slightly smoothened out and delayed. The reason for the 

deviation is the formation of sub-critical particles which is 

ignored in the Friedlander’s model. Even though there is a 

small number of sub-critical particles compared to the total 

number of particles after the nucleation burst, they still 

consume a notable amount of the monomer gas. With the 

lower vapor density in the full solution, smaller particles 

form and the density of nascent particles is considerably 

higher, as is shown on Fig. 4b. 

The nanoparticle formation model was validated by 

comparing to the asymptotic self-similar solution by S.K. 

Friedlander [21] (see Fig. 4). This semi-analytical solution 

represents particle size distribution as a final stage of a long 

coagulation process when the size distribution in 

normalized coordinates (divided by the total density of all 
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clusters and average number of atoms in a cluster) stops 

changing with time. The modeling was performed for 

condensation of the iron vapor under the experimental 

conditions (temperature profile, vapor pressure) of Ref. 

[19]. The residence time was increased to allow the 

solution to equilibrate. As can be seen from Fig. 4, the 

numerical solution substantially deviates from the self-

similar solution initially (as expected) but then gradually 

approaches it as the coagulation proceeds. 

 

Fig. 4. Developing particle size distribution in normalized 

coordinates under conditions of experiments [19] – color 

lines; self-similar solution of S.K. Friedlander [21] – 

black line. 

The results presented above (as well as most of the 

condensation research to date) were obtained using a 

spherical approximation for the nanoparticle shape, which 

has been used in most of the condensation simulations to 

date. With this approximation, the Gibbs free energy of 

formation of a particle, ∆𝐺 = −𝑁𝑘𝑇𝑙𝑛𝑆 + 4𝜋𝜎𝑟𝑊
2𝑁2/3 is 

derived from the saturation degree S and surface tension 

for a flat surface 𝜎 (here, N is the number of atoms in the 

particle, rW is Wigner-Seitz radius). This approximation 

should work well for large particles (having a least a 

hundred atoms); however, for smaller particles its 

applicability is questionable. Gibbs free energies of 

formation for aluminum particles up to 50 atoms can be 

found in Ref. [26]. These values deviate from the spherical 

model with peaks and dips corresponding to so-called 

‘magic numbers’ of atoms in a particle. Fig. 5a shows 

simulated particle size distributions for multiple time 

instants using the Gibbs free energies from Ref. [26], for 

the same conditions as in Fig. 4. The results clearly 

illustrate the effect of ‘magic numbers’ on the particle size 

distribution. Fig. 5b shows a drastic effect of the Gibbs free 

energy model on the condensation process: the spherical 

model predicts the condensation happening much earlier 

than with inclusion of ‘magic numbers’. 

   

Fig. 5. Particle size distributions for various time instants 

(a) and vapor density evolution (b) during condensation of 

aluminum. Thick line – using the Gibbs free energies 

from Ref. [26], thin line – using the spherical model. 

 

There are ongoing debates whether ‘magic numbers’ 

should be accounted for in the condensation process. The 

argument against ‘magic numbers’ is that the particles are 

not solid but are in a liquid state and thereby don’t have an 

ordered structure [27]. Our molecular dynamics (MD) 

modeling using LAMMPS software package [28] 

qualitatively supports this statement: compare the Fe13 

cluster configuration at 0K and 1200K (solid state) with its 

appearance at 1500K (melting) in Fig. 6. This question 

remains open, and our modeling results show that there is 

a need for accurate thermodynamic data for small particles. 

We have started such a computational study for iron 

nanoparticles. We are using classical MD, ab-initio MD 

(AIMD), and density function theory (DFT) methods to 

calculate the Gibbs free energy of formation of many 

cluster sizes. The combination of different methods allows 

us to take into account the ‘magic numbers’ related to the 

electronic structure and packing of the clusters. As an 

example, Fig. 7a shows total energy of an Fe13 cluster as a 

function of temperature calculated by classical MD (using 

LAMMPS) and AIMD with the PBE0 DFT functional in 

VASP software package [29]. As shown in Fig. 7b, a good 

agreement between the Finnis-Sinclair potential [30] and 

PBE0 functional on the binding energy per atom of Fen 

clusters was obtained, while the HSE06 functional 

implemented in the Gaussian-16 code [31] predicts lower 

binding energy. Validation of the DFT functionals and MD 

a) b) 

               

T= 0K                          1200K                      1500K 

Fig. 6. Snapshots of an Fe13 cluster at different 

temperatures in LAMMPS [28] MD simulations. 



potentials for Fen clusters will be done via comparison to 

available experimental data on atom abstraction energies.  

 

Fig. 7. Total energy of Fe13 cluster as a function of 

temperature (a); the binding energy per atom of Fen 

clusters calculated by the HSE06, PBE0 DFT functionals 

and by the Finnis-Sinclair potential (b), where the dashed 

line is the cohesive energy of (110) oriented surface of α-

Fe, the dash-dotted line is cohesive energy of α-Fe bulk 

calculated by PBE0 functional (VASP). 
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