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Abstract: In-liquid spark discharge is a promising field for many applications. The physics 
of the involved processes is far to be understood. The temporal evolution of the plasma 
properties is fast (~ns), which makes the measurement and the interpretation of the data a 
challenge. Here, we apply Bayesian method to exploit time-integrated Hα line emission 
intensities to derive time-resolved properties. The model predicted with high accuracy the 
line profile, and the properties (here ne(t)) agreed well with time-resolved measurements. 
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1. Introduction
Discharge with liquids is a growing research field with

great potential not only in applications, such as 
nanomaterial synthesis [1], water sterilization, and 
medicine [2], but also in fundamental (plasma) physics. 
Plasma can be coupled to a liquid in various configurations 
(in-liquid, in-contact with liquid, in gaseous bubbles, or in 
gas with liquid droplets), and various discharge modes can 
be sustained, such as glow, streamer, spark, etc. [3]. 
Herein, we focus on in-liquid spark discharges that showed 
interest in the field of nanomaterial synthesis [1]. For 
instance, discharges between metal electrodes in water 
produce metal oxide nanoparticles such as CuO, Cu2O, 
NiO, CoO, Al2O3, etc. [1, 4, 5], while discharges between 
metal electrodes in liquid hydrocarbons produce 
nanocomposite materials, i.e. metal nanoparticles 
embedded in a hydrogenated C-matrix [6].  

In-liquid spark discharge is a fast and transient 
phenomenon characterised by a high electrical current 
(~10-100 A), high initial pressure (~10-100 bar), high 
temperature (5,000-10,000 K), emission of shock waves, 
and formation of bubbles. The high intensity of the emitted 
radiation in the visible range allows its characterization by 
optical emission spectroscopy [7]. However, its transient 
[1] and stochastic nature [8] makes the application of such
a diagnostic technique a challenge. The plasma evolves
rapidly (~ ns), which suggests that integration periods of
the optical acquisition device should be in the same order
(ns). Although it is technologically feasible, the stochastic
nature of the discharge occurrence makes it useless, and
integration periods around 10-50 ns are more adapted.
Moreover, as the discharge modifies the electrode (via
erosion) and the liquid composition (dissociation and
enrichment with nanoparticles) continuously, the plasma
properties change with time. In these conditions, the
coherence of the acquired spectra and the derived
characteristics become questionable. An alternative way to
overcome the difficulties related to stochasticity and non-
reproducibility lies in the acquisition of time-integrated
spectra. However, the challenge becomes the interpretation
of the spectra and the determination of time-dependent
plasma properties.

The goal of this work is to evaluate the utilization of a 
Bayesian method in the analysis of optical emission 

spectra. This method is widely used in the exploitation of 
astrophysical data [9], but not yet to a laboratory plasma. 
The advantages of a Bayesian method are numerous. For 
instance, it can be applied to datasets with considerable 
noise, and reliable properties can be obtained. Moreover, it 
provides information on the possible correlation between 
different parameters, i.e. relationships between them.  

In this paper, we explore the potential of the Bayesian 
method in the exploitation of a time-integrated optical 
emission spectrum of a spark discharge in water. This study 
case was chosen because of the transient nature of the 
discharge and, more particularly, because of the non-
conclusive interpretation of such spectra in literature. In 
this first approach, we focus the development of the model 
for Hα line profile and intensity, and later an analysis of the 
complete spectrum will be performed.  

2. Conditions of data acquisition
The optical emission spectra are acquired using the same

experimental setup as in [10]. Briefly, the discharge was 
generated between two copper electrodes immersed in 100 
mL of distilled water. The interelectrode gap distance was 
set to 100 µm. The high-voltage pulses (at 20 kV amplitude 
and 500 ns pulse width) was provide by a power supply 
(NSP 120-20-P-500-TG-H) from Eagle Harbor 
Technologies. Acton 2750 spectrometer (equipped with a 
grating of 300 lines/mm) coupled to an ICCD camera (PI-
MAX) from Princeton instruments were utilized to acquire 
the optical emission spectra from 300 to 900 nm. The time-
integrated spectra were acquired at 1 µs exposure time, 
while the time-resolved spectra were acquired at 50 ns 
exposure time. The synchronization between the high-
voltage pulse and the ICCD camera was ensured using an 
external pulse generator (Quantum Composers Plus 9518). 

3. Results and discussion
3.1. Conventional processing of the experimental data

Fig. 1 shows a typical spectrum that is averaged over 
space and time (exposure time of 1 µs). Clearly, it contains 
many information, such as continuum component that 
could be attributed to a blackbody radiation (~5,000-7,000 
K), emission of Hα at ~656 nm (and absence of Hβ and other 
H lines), and emission of O at ~777 and 844 nm. Although 
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different information can be derived from such a spectrum, 
we will focus on Hα line, as mentioned earlier. 

 

 
Fig. 1. 1-μs-integrated optical emission spectrum from 

300 nm and 900 nm for in-water spark discharge. 

The profile of a line is often utilized to determine some 
plasma parameters, such as electron density (ne). Here, Hα 
line profile will be utilized to determine ne. At this stage, it 
is worth reminding that the presence of different sources of 
broadening contributes to the measured profile, namely 
experimental, Doppler, natural, resonant, Van der Waals, 
and Stark broadenings. Experimental and Doppler 
broadenings have Gaussian profile, while the others have 
Lorentzian profile. Considering typical conditions for in-
liquid spark discharge [7, 11, 12], i.e. ne ~1025 m-3, T 
~5,000 K, and P ~100 bar, one can estimate the broadening 
(FWHM, Full Width at Half Maximum) provided by each 
source [13]; the values are summarized in Table 1. 

 
Table 1. Different broadenings of the Hα line calculated 

for ne = 1025 m-3, P = 100 bar, and T = 5,000 K.  
Sources Gaussian; Δλ (nm) Lorentzian; Δλ (nm) 
Experimental 0.07 - 
Doppler 0.03 - 
Natural - 0.000117 
Resonant - 0.1 
Van der Waals - 0.52 
Stark - 17.95 

 
The different broadening values reported in Table 1 

clearly show a dominance by Stark broadening. The 
measured profile convolutes Gaussian and Lorentzian 
broadening, and results in a Voigt profile. Considering the 
known broadenings, Hα line (extracted from Fig. 1 and 
background-corrected by a linear baseline correction, i.e. 
the continuum radiation is considered linear in the range of 
550-750 nm) is fitted by a Voigt profile, and the best 
obtained fit is shown in Fig. 2. Clearly, one remarks that 
the Voigt profile is far to represent the measured profile. 
The failure is principally due to the fact that the integrated 
spectrum is a sum of different profiles, with different 
amplitudes and broadenings. 

 
Fig. 2. 1-μs-integrated Hα profile and its fit with a Voigt 

profile. 
 
3.2. Bayesian method and model description 

The application of a Bayesian method in the fit of the 
integrated experimental Hα line profile necessitates the 
establishment of a deterministic model based on some 
physical assumptions. The model considered here is the 
description of the light profile, Ilight(λ), in optically-thin 
plasma conditions: 
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C1 is a constant (to consider the solid angle of detection 
from the optical fiber and the sensitivity of the ICCD 
camera). In Equation (1), 𝑓(𝑡)  accounts for temporal 
variations of the density of the emitting level. Assuming 
Boltzmann distribution for hydrogen excited states, 𝑓(𝑡) 
can thus be linked to temporal variations of the ground-
state hydrogen population and excitation temperature. In 
Equation (1), A and B are linear baseline correction 
parameters. As for PLor(λ, t), it corresponds to the unity-
normalized Lorentzian line profile: 

𝑃'()(𝜆, 𝑡) =
1

1 + 4𝜆 − 𝜆-Δ𝜆(𝑡) 7
. (2) 

where Δλ(t) is the line broadening at t, and λ0 is the center 
of the line. We consider in the model that broadening only 
results from the Stark effect. Besides, only the linear stark 
effect is considered. In this condition, Stark broadening is 
linked to the electron density, ne, through [14]: 
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At this stage, one needs to propose a model to describe 
the temporal evolution of ne. Previous studies on this 
subject suggest that an exponential decay may be accepted 
[7, 12, 15]. Therefore, we chose to represent ne(t) by: 



𝑛4(𝑡) = 𝑛4- exp 4−
𝑡
𝜏4
7 (4) 

where ne0 is the electron density at the beginning of the 
discharge, and τe is the characteristic temporal decay time.  

Dynesty Python package was used to implement the 
Bayesian method [17, 18, 19]. A nested sampling method 
was also used to evaluate the posterior distribution of the 
set of parameters with a combination of static and dynamic 
sampling with 2,500 live points and multiple bounding 
ellipsoid condition. The logarithm of the likelihood L(ϴ) is 
expressed as in equation (6): 
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ϴ is the vector of all the parameters, Idata(λi) is the 
experimental data, σi is the standard deviation of the 
experimental data (set to 0.15), and Nobs is the number of 
data points (set to 3,610). To compute the integral of 
equation (1), 200 discrete time steps of 5 ns are used. The 
lower and higher limits of the parameters are listed in Table 
2 and are used to define the uniform prior distribution. In 
these conditions, Python program chooses randomly 
numerous sets of parameters and evaluates the likelihood 
of each one. Then, for the regions in the parameter domain 
with the highest probability, more samples will be tested 
until a convergence criterion [17] is reached. Finally, the 
set of parameters is provided (best values in Table 2) in 
addition to the profile predicted by the model (Fig. 3).  
 
Table 2. Summary of the parameters, the lower and higher 

limits, and the best values with 95% certitude interval.  
Parameters Lower limit Higher limit Best values 

𝜏!	[𝑛𝑠] 1 1000 136"#$%&' 
log()(𝑛!)	[𝑚"*]) 20 27 25.8"(.(%(  

𝜆)	[𝑛𝑚] 640 670 658.3").*%).* 
𝐴	. 10"$ −100 100 −6.5",%, 
𝐵 −1 1 −0.044").)#*%).)#* 

 
Fig 4. compares the measured Hα profile and the fit 

predicted by the model using the parameters summarized 
in Table 2. Clearly, the agreement between these two 
profiles is much higher than that obtained from the Voigt 
fit, presented earlier (Fig. 3).  

 
Fig. 3. 1-μs-integrated Hα profile and its fit using 
Bayesian method with the parameters in Table 2. 

To evaluate the model accuracy, time-resolved emission 
spectra are acquired with an exposure time of 50 ns. We 
used Lorentzian profile to fit the profiles of the two lines, 
Hα and O (at 777 nm), to determine ne(t) [20]. Fig. 4 shows 
the normalized experimental spectrum of the Hα line and 
the corresponding Lorentzian fit at different moments in 
the discharge.  

 

 
Fig. 4. 50-ns-integrated Hα profile and its fit with a Voigt 

profile at different moments in the discharge. 
 

Finally, we present in Fig. 5 the temporal evolution of 
ne(t) (with uncertainty) predicted by the model, and added 
to the values measured at different moments. Except the 
datapoint at 200 ns, a great agreement between the two data 
sets, both in magnitude and characteristic time, is observed. 
Moreover, it is worth noting that the characteristic time of 
the exponential decay found here (~136 ns) is comparable 
with that determined in other studies (~100 - 200 ns) under 
similar in-liquid discharge conditions [7, 15]. As for the 
measurement of the ne at 200 ns, which does not agree with 
the model prediction, we believe that the Lorentzian fit 
may not be adapted. Indeed, Hα line can have a strong self-
absorption, and this has not been considered in the 
Lorentzian fit. In fact, we performed a fit of this profile 
while considering the self-absorption, and the determined 
value (back star in Fig. 5) agrees well with the prediction 



of the model. This finding suggests that self-absorption 
should be considered in the model, and this will be 
performed in a future study.  

 
 

 
Fig. 5. Temporal evolution of ne predicted by the model, 

and the ne values determined by Lorentz fit of 50-ns-
integrated Hα and O line profiles. 

 
4. Conclusions and perspectives 

In this work, we explore the potential of the Bayesian 
method in the exploitation of optical emission spectra of 
in-liquid spark discharges. We showed that it is not feasible 
to fit an integrated spectrum with a Voigt profile, because 
it does not consider the temporal evolution of plasma 
properties, i.e. profile amplitude and broadenings. 
However, the use of Bayesian method while considering a 
simplified model provided a very good agreement between 
the measured and the predicted profiles. The model 
assumed an exponential delay of ne, and the predicted 
values of ne and the characteristic time perfectly agrees 
with the reported measurements in literature. The method 
was validated by reporting ne at different moments in the 
discharge using time-resolved emission spectra. Finally, 
we believe that Bayesian method could play a useful role 
in the processing of optical emission spectra, and a more 
complete model to describe the whole spectrum while 
considering other phenomena (continuum, absorption, etc.) 
showed is under development. 
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