NH₃ synthesis in a catalytic atmospheric RF discharge

S.C.L Vervloedt¹, C. Stewig¹, A. von Keudell¹

¹ Experimental Physics II – Reactive plasmas, Ruhr-University Bochum, Bochum, Germany

Abstract: This contribution will present experimental results on the NH₃ synthesis in an atmospheric catalytic homogenous RF discharge in a N_2+H_2+He gas mixture. Initial results on the plasma synthesis indicate that the NH₃ formation is reduced with increasing N_2 admixture, which can be attributed to a reduced plasma density or an increasing contribution of NH₃ losses by collisions with N_2^* with increasing N_2 admixture.

Keywords: NH₃ synthesis, atmospheric plasma, RF discharge, plasma-catalytic synergism

1.Introduction

Since the beginning of the last century, a growing fraction of humankind depends on the availability of artificial fertilisers. Ammonia is one of the main ingredients of nitrogen-based fertilisers. At the moment, this substance is synthesised with the Haber-Bosch process, which uses a significant amount of the global energy consumption. A potential alternative would be plasma catalysis, since such a reactor can be easily switched on/off depending on an on-site demand and the supplied renewable energy.

In this contribution, the NH₃ synthesis in an N₂+H₂+He atmospheric catalytic RF plasma is studied. The goal is to observe and characterise plasma-catalytic synergism. This is done with a reactor that is optimised for studying potential plasma-catalytic synergism by maximising the surface to volume ratio. The NH₃ concentrations are obtained with Fourier Transform Infrared (FTIR) absorption spectroscopy. Additionally, optical emission spectroscopy (OES) is used to characterise the excitation of N₂ by observing the second positive (SPS) and first negative (FNS) systems. These emission spectra depict a highly non-equilibrium environment in the plasma that is beneficial for N₂ dissociation processes, e.g. dissociative adsorption on a catalytic surface.

Figure 1: A side view of the atmospheric RF discharge reactor, where the copper electrodes (I) are shielded from the plasma (III) using glass plates (II). The red dashed circle indicates the section of the plasma observed during the OES measurements.

2. Experimental setup

For this contribution, the NH₃ synthesis is studied in a helium dominated atmospheric RF discharge, where up to 1% of the gas mixture is N_2+H_2 . The reactor is discussed in detail by Stewig *et al* [1], so merely a brief overview is given here. The rectangular configuration of the reactor consists of two parallel copper electrodes that are protected from the plasma by glass plates, see figure 1. The plasma side of the glass plates will be modified, when investigating the influence of different (catalytic) surfaces. Additionally, the temperature of the reactor can be regulated with an ecocooling thermostat (Eco RF 145S, Lauda Gmbh).

The exhaust of the reactor is directed towards a multipass cell, which is installed in the sample compartment of a FTIR (Vertex 70v, Bruker). The absorption path length – of the IR light – is set up to 7.2 meters, which results in a lower detection limit of 0.05 ppm NH₃. Also, the temperature of the cell is controlled up to 200 °C by an accompanying temperature PID-system.

Furthermore, the OES measurements are performed with a 0.5 meter long Spectrograph (SpectraPro-500i, Acton Research Corporation). The light is collected by a multicore optical fiber (LG-455-020-3) that is placed in front of the reactor and directly couples the light into the spectrograph. The red dashed line of figure 1 depicts the section of light originating from the plasma that is captured by the fiber, which is roughly 50% of the viewing field. Finally, the spectra of N₂ are fitted to obtain the rotational and vibrational temperatures of the individual N₂ systems and the ratio of the intensity between these systems.

Figure 2: FTIR spectrum for the symmetric bending mode of NH_3 between 800 and 1200 cm⁻¹, where the concentration of the best fit is 14 ± 1 ppm and $T_{cell}=80^{\circ}C$.

3.NH₃ concentration measurement

The NH_3 concentrations that will be presented in this contribution are obtained with IR absorption spectroscopy. A typical spectrum is depicted in figure 2. Here, the spectra (blue) is shown together with the baseline correction (black, dashed) and best fit (orange). The baseline correction is required due to minor intensity fluctuations during the acquisition time. Also, in the lower panel, the

residual between the data and the fit is shown. The spectrum is assumed to be in thermal equilibrium, because it is measured *ex situ*. Therefore, the spectrum is only characterised by a single temperature and a concentration, as opposed to the non-equilibrium spectra obtained with *in situ* measurements. The equilibrium temperature is set by regulating the temperature of the multipass cell. Finally, the concentration is defined with respect to the total number of species at atmospheric pressure.

The best fit is obtained with a python script [2] by calculating the spectrum using the constants from the HITRAN-database [3] and assuming that the instrumental broadening of the FTIR can be approximated by a Gaussian line shape and a half-width-at-half-maximum of 0.194 ± 0.002 cm⁻¹. Table 1 shows the parameters used to characterise the measured spectra.

Table 1: List of fit parameters with the corresponding settings.

Parameter:	Vary	Init. guess:	Range
Pressure	No	1 atm	-
Path length	No	7.2 m	-
Wavenumber offset	Yes	0 cm ⁻¹	-1, 1 cm ⁻¹
Gaussian instr.	Yes	0.1 cm ⁻¹	0, 1.0 cm ⁻¹
Fraction NH ₃	Yes	5 ppm	0, 10%
Equil. Temperature	No	T_{cell}	-

Unfortunately, the best fit has a notable difference for 4 rotational lines in the R-branch of the symmetric bending mode transition $|0^{s}\rangle \rightarrow |1^{a}\rangle$, which are observed between 1047 and 1123 cm⁻¹. Future calibration measurements with a known NH₃ gas mixture should elucidate the origin of this discrepancy.

Figure 3: The measured (blue) NH_3 concentration for 1% N_2+H_2 , 5.7W and 1:3 $N_2:H_2$. Theoretical build-up of nonabsorbing species (dashed black) and best fit (orange) temporal evolution of NH_3 in the multipass cell of the multilayer adsorption model.

The measured NH_3 concentration in the multipass cell increases on a time scale longer than expected from the simple residence time of the multipass cell of 6.2 minutes, as illustrated in figure 3. The much longer time constant of the measured NH_3 concentration can be attributed to multilayer adsorption of NH_3 on the inside walls of the multipass cell. This time constant is reduced by increasing the temperature of the multipass cell to enhance desorption from the inner walls. Moreover, a calibration with a known concentration of NH_3 will be used to validate this model and to determine relevant constants.

4. Plasma synthesis of NH₃

The plasma synthesis of NH_3 is studied to serve as a benchmark when introducing different (catalytic) surfaces to the reactor. The NH_3 formation is quantified for different plasma conditions. This is connected to the excitation of N_2 , which is determined from SPS and FNS of N_2 . Also, the excitation of N_2 is of importance as the dissociation – of this stable molecule – is a bottle neck in NH_3 formation.

In figure 4, the NH₃ concentration is plotted as function of the relative N₂ admixture, which is defined as the N₂/(N₂+H₂+He) flow ratio. Here, the plotted concentrations are estimated from the extrapolation of the time dependent build-up of the NH₃ concentration in the multipass cell, similar to figure 3. The corresponding error bars are an estimate of the confidence interval for this extrapolation.

Figure 4: The NH₃ concentration as function of the N₂ admixture for 1% N₂+H₂ admixture, a power of $5\pm1W$, and a controlled reactor temperature of 20°C.

Preliminary results show that the maximum NH_3 formation occurs at N_2 deficient gas mixtures. This could be attributed to either a reduced plasma density with increasing N_2 admixture to the He-discharge or to the increasing contribution of back-reactions, where NH_3 is destroyed in collisions with excited nitrogen species.

When assuming chemical equilibrium for the plasma gas, both the reduced plasma density and the back-reaction model yield the same relation for the NH₃ formation as function of N₂ admixture. The first one, by using reaction (1) and assuming the forward reaction rate k_1 to be proportional to the plasma density, which is in turn inversely proportional to the N₂ admixture. This would result in two constants that are related to the ratio of the forward and backward reaction rate k_1/k_{-1} and to the influence N₂ admixture has on the plasma density. For the back-reaction model, reaction (2) is used in addition to (1). This results in a curve with two constants as well. Again, one constant is related to k_1/k_{-1} . Whilst the other constant is related to fraction of NH₃ lost due to N₂* instead of the general losses, i.e. the ratio k_2/k_{-1} .

$$N_2 + 3H_2 \leftrightarrows NH_3 \tag{1}$$

$$\mathrm{NH}_3 + 2\mathrm{N}_2^* \to 3\mathrm{N}_2 + 3\mathrm{H}_2 \tag{2}$$

The SPS and FNS of N_2 are measured to study the excitation of N_2 by the plasma. The former system is used to deduce the importance of excitation by electron collisions and by Pooling reactions – between excited N_2 species – and its vibrational temperature is used to characterise the level of excitation. Furthermore, according to Benedictis *et al*, the emission of the FNS is the result of Penning excitation by He* of $N_2(X)$ [4]. Thus, the ratio of the intensity FNS/SPS gives insight in the importance of N_2 excitation by excited He-species.

In figure 5, the vibrational temperature obtained from the SPS and the intensity ratio FNS/SPS is given as a function of the N_2 admixture for different plasma powers. The observed spectra for 0% N_2 admixture are attributed to impurities from air, since – unlike for figure 4 – the reactor was not operated in a vacuum chamber.

Figure 5: The vibrational temperature of the SPS of N_2 (a) and the intensity of FNS to SPS (b), which is normalised to the value of 4.0 W, 0% N₂.

The excitation of N₂ is dominated by Penning excitation by He^{*} and excitation by electron collisions. Pooling reactions between excited N₂ species is ruled out on basis of the rotational temperature of the SPS [5]. The rotational temperature of the SPS – which is found to be between 300 and 350 K – conforms to the gas temperature found in a previous study [1], thus the upper electronically excited state of SPS is created through excitation by electron collisions, and not by the Pooling reaction N2(A)+N2(A) \rightarrow N2(C)+N2(X).

Furthermore, with increasing N_2 admixture, the excitation by electron collisions becomes more dominant than by Penning excitation by He*. This is deduced from the inversely proportional relation of the intensity ratio FNS/SPS to the increasing N_2 admixture in panel 5(b). In the future, these results – which were obtained with N_2 +He

– will be compared to N_2+H_2+He mixtures to study the impact of H_2 has on the excitation of N_2 .

The vibrational temperatures, in panel (a), show an inconclusive picture when identifying the origin of a reduced NH₃ concentration at higher N₂ admixtures. On the one hand, the 'high' temperatures will stimulate vibrational excitation of NH₃, via vibrational energy exchange. Thereby, promoting the destruction of NH₃ by excited nitrogen species. On the other hand, however, the decrease of the vibrational temperature with increasing N₂ admixture is in line with the assumption that a lower NH₃ conversion follows from a reduced plasma density with increasing N₂ admixture.

According to literature, NH₃ is formed by stepwise hydrogenation of N-species, where surface reactions are important [6]. Therefore, for studying the effect different surfaces have on the conversion, the plasma-side of the glass plate will be modified in the future, to increase the surface area and to introduce catalytic materials. Also, the high vibrational temperatures of N₂ – reported in panel 5(a) – should be beneficial for dissociative adsorption, thereby overcoming the bottle neck of dissociating N₂ [7].

5. Conclusion

In this contribution, a fundamental study on the NH₃ synthesis in a plasma catalytic reactor is performed, with the goal of observing and quantifying plasma-catalytic synergism. Initial efforts were focussed on characterising the plasma synthesis of NH₃. The observed reduced NH₃ conversion with increasing N₂ admixture is either attributed to a reduced plasma density or to an increasing contribution of back-reactions with increasing N₂ admixture.

References

Stewig *et al* 2020 J. Phys. D: Appl. Phys **53** 125205
Damen *et al* 2020 Plasma Scources Sci. Technol. **29**

065016 [3] Gordon *et al* 2022 J. Quant. Spectrosc. Radiat. Transf.

277 107949

[4] Benedictis et al 1994 J. Phys. B: At. Mol. Opt. Phys. 27 615

[5] Ceppelli *et al* 2021 Plasma Sources Sci. Technol. **30** 115010

- [6] van Helden et al 2007 J. Appl. Phys. 101 043305
- [7] Mehta et al 2018 Nat. Catal. 1, 269-275

6. Acknowledgements

This project is supported by the DFG (German Science Foundation) within the framework of the Coordinated Research Centre SFB 1316 at the Ruhr-University Bochum. The authors would like to thank Simon Kreuznacht and Laura Chauvet for helpful discussions.