

18th Int. Sym. on Plasma Chemistry August 26-31, 2007, Kyoto, Japan

Control of

Plasma Polymerization Processes

Dr. Dirk Hegemann Empa, St.Gallen, *Advanced* **Fibers** dirk.hegemann@empa.ch

Fibers

Advanced

Empa, Swiss Materials Science & Technology

Dirk Hegemann, Plasma Polymerization, ISPC 18

Empa Laboratory

Advanced Fibers

Fiber and Textile Chemistry
finishing, wet-chemical treatment

- Fiber Development
 - bi-component fiber spinning device

Plasma-modified Surfaces

- cleaning, activation, deposition

Outline

Control of Plasma Polymerization Processes

- Plasma polymerization
- Influence of
 - reactor geometry
 - plasma expansion
 - pressure
 - monomers
 - carrier / reactive gas
- Nanoporous coatings
- Scale-up

Plasma Polymerization

Macroscopic Kinetics

Fibers

Advanced

Concept of chemical quasi-equilibria related to plasma

gas flow	dissociation excitation	recombination relaxation	stable
e.g. monomer	active zone	passive zone	e.g. deposition
Macroscopic kinetics: (Becker formula)		$S = \frac{W\tau_{act}}{pV_{act}} \propto \frac{W}{F}$	$\tau_{act} = \frac{pV_{act}}{p_0 F}$

The similarity parameter *S* represents the energy invested per particle of the gas mixture during the flow through the active plasma zone.

H.-E. Wagner, in: Low Temperarure Plasma Physics, ed. Hippler et al., Wiley-VCH, 2001, p. 305. A. Rutscher, H.-E. Wagner, Plasma Sources Sci. Technol. 2, 1993, 279.

Plasma Polymerization

Evaluation of deposition rates

For radical-dominated discharges the reaction parameter power input per gas flow W/F within the active plasma zone determines the mass deposition rate R_m

E_a: (apparent) activation energy *G*: geometrical factor in [g/cm⁵] deposited mass from (per) plasma volume and per area

Y.S. Yeh, I.N. Shyy, H. Yasuda, J. Appl. Polym. Sci.: Appl. Polym. Symp. 42, 1988, 1.

D. Hegemann, H. Brunner, C. Oehr, Plasmas Polym. 6, 2001, 221.

Fibers Advanced

Dirk Hegemann, Plasma Polymerization, ISPC 18

Plasma Polymerization

Evaluation of Deposition Rates

Deposited mass for different reactor geometries

Influence of Reactor Geometry

Influence of Reactor Geometry

Tubular set-up

J.M. Kelly, R.D. Short, M.R. Alexander, Polymer 44, 2003, 3173.

Influence of Reactor Geometry

Similarity parameter increases with electrode distance.

D. Hegemann, H. Brunner, C. Oehr, Surf. Coat. Technol. 142-144, 2001, 849.

V. Sciarratta, D. Hegemann, M. Müller, U. Vohrer, C. Oehr, in: Plasma Processes and Polymers, Wiley-VCH, 2005, p. 39.

Symmetric Reactor

Plasma length d_{act}

Symmetric Reactor

Variation of temperature, power, flow, and pressure

Influence of Plasma Expansion

Plasma polymerization within asymmetric discharges

Influence of Plasma Expansion

Light distribution of plasma in front of RF electrode

Influence of Plasma Expansion

Light distribution of plasma in front of RF electrode

Influence of Plasma Expansion

Influence of Plasma Expansion

Influence of Pressure

Plasma polymerization within asymmetric discharges

Influence of Pressure

Influence of Pressure

Influence of Pressure

Consideration of similarity factor

Influence of Pressure

Consideration of similarity factor

Plasma Polymerization

Formation of film-forming radicals

Influence of Monomers

Influence of Monomers

Generalized activation energy of different monomers

Monomer	Formula	Activation energy	Main dissociation
methane	CH ₄	$5.3\pm0.5\mathrm{eV}$	С-Н, (Н-Н)
acetylene	C_2H_2	$9.0\pm0.7~\mathrm{eV}$	C≡C
ethylene	C_2H_4	$12 \pm 1.2 eV$	C=C, C-H (2x)
pyridine borane	N:BH ₃	$12 \pm 1.5 eV$	C-N, C-C, N:B, C-H
TBBD		$15 \pm 1.5 \mathrm{eV}$	C-N (3x), C-C, C-H
HMDSO (CH ₃) ₃ -Si-O-Si-(CH ₃) ₃	$_3$ 12.8 ± 0.7 eV	Si-C, C-H, Si-O
Fibe	D. Hegemann et al., Pla	asma Process Polym 4, 2007, 2	^{29.} ΕΜΡΑ
Advanced	Dirk Hegemann, Plasn	na Polymerization, ISPC 18	Materials Science & Technolog y

HMDSO Discharge

Initiation of HMDSO plasma polymerization

The activation energy gives the dissociation energy to obtain the radicals that predominantly lead to plasma polymer growth.

Influence of Carrier / Reactive Gases

Oxygen added to HMDSO discharge

Design of O₂/HMDSO Coatings

Control of wetting properties

Influence of Carrier / Reactive Gases

Correction factor for the combined flow $F = F_m + a F_c$

Monomer	Added gas	Flow factor a	
hydrocarbons	Ar, He	0.05-0.1	
	H ₂	~0.15	
	CO ₂	~0.15	
	N ₂	0.35	
	NH ₃	0.5	
HMDSO	O ₂	0.6	D. Hegemann et al., Plasma Process. Polym.
Acrylic acid	H ₂	~0.25	4, 2007, 229.
Fibers		E	
Advanced	Dirk Hegemann, Plasma Polymerization, ISPC 18		Materials Science & Technolog y

Influence of Reactive Gases

Plasma polymerization of hydrocarbon/ammonia

Re-Engineering

Plasma polymerization of asymmetric N₂/CH₄ discharges

Deposition of Nanoporous Coatings

Rivaling deposition/etching processes

plasma polymerization + chem./phys. etching

Deposition of Nanoporous Coatings

Hydrocarbon/ammonia RF discharges

Deposition of Nanoporous Coatings

Film density related to porous structure

Nanoporous Plasma Coatings

Dyeing of plasma coatings on textile fabrics

Dye molecules (~3 nm) are able to diffuse into nanoporous structure.

M.M. Hossain, A.S. Herrmann, D. Hegemann, Plasma Process. Polym. 4, 2007, 135.

Nanoporous Plasma Coatings

Dyeability (color intensity K/S) vs. pore sizes

Color intensity correlates with pore sizes, while overall N content is constant for a fixed NH₃/C₂H₂

Materials Science & Technolog y

Nanoporous Plasma Coatings

Permanence of dyed plasma coatings on textile fabrics

Nanoporous Plasma Coatings

Hydrophilic treatment – hydrophobic recovery

Nanoporous Plasma Coatings

Loading with wet chemicals

Transfer of Plasma Polymerization

Scale-up to Web Coater

Continuous processing of textiles, membranes, foils, bands, and papers

width = 65 cm velocity = 0.1..100 m/min A_{dep} = 10'000 cm²

Dirk Hegemann, Plasma Polymerization, ISPC 18

Transfer of Plasma Polymerization

Different reactor geometries

Outlook

Control of Plasma Polymerization Processes

control / design of

- plasma reactors
- nano-scaled coatings
- nanoporous coatings
- multifunctional (textile) surfaces
- transfer into industry

Fibers

Advanced

Materials Science & Technolog y

Acknowledgement

Laboratory of Advanced Fibers

Plasma group

contact dirk.hegemann@empa.ch

D. Balazs, M. Hossain, E. Körner, U. Schütz, M. Amberg, S. Guimond

- Chemistry group: M. Heuberger, A. Ritter, F. Reifler
- CTI Bern (funding) KTI/CTI

Fibers Advanced

Dirk Hegemann, Plasma Polymerization, ISPC 18

