

PROBING OF A CHEMICALLY ACTIVE PLASMA WITH A MOLECULAR BEAM

L.L.Artsimovich, S.A.Danko, S.L.Nedoseev, D.G.Filkin

I.V.Kurchatov Institute of Atomic Energy, Moscow, USSR

Abstract

The reduction rates of halogenides of metals present in non-equilibrium plasmas with $T_e \gg T_i$, T gase has been studied. The reduction rate is determined from the bombardment of a plasma target with a neutral molecular beam. The plasma of $n_e \sim 10^{10} \text{ cm}^{-3}$, $T_e \sim 3-10 \text{ ev}$ is produced in the Penning discharge (magnetic field $H \sim 0.5 - 1.0 \text{ kOe}$, voltage 3 kv, working gas - He, $p \sim 10^{-4} - 10^{-2} \text{ Torr}$). A flux of the NaCl molecules moves perpendicular to the magnetic field. To determine the plasma parameters a double floating probe technique has been used. The dissociation products are distinguished from the Na $3^2P - 3^2S$ doublet spectral intensities. A mechanism of and channels of the dissociation due to an electron impact in a nonisothermal plasma are discussed.