MUTUAL NEUTRALIZATION OF IONS IN COLLISIONS

B.M.Smirnov
I.V.Kurchatov Institute of Atomic Energy, Kurchatov Square, Moscow, 123182, USSR

ABSTRACT

The theoretical and experimental results for the rate constant of the pair recombination of the positive and the negative ions are compared.

In this note the theoretical results /1-3/for the rate constant of the pair recombination of the positive and the negative ions are compared with the experiment. At low values of the ion collision energy E the cross section of the process considered is given as follows:

$$G = \frac{\mathcal{K}e^2 R_0}{E} \quad , \qquad E \ll \frac{e^2}{R_0} \quad , \tag{1}$$

where \mathcal{R}_{θ} is the distance of the closest approach during the collision, at which the valence electron transfers in the positive ion field. Thereafter the rate constant is:

$$k = \langle \mathcal{V} \mathcal{G} \rangle = \sqrt{\frac{8\mathcal{K}}{T_{\mu}}} e^2 R_{\sigma} \quad , \quad T \ll \frac{e^2}{R_{\sigma}} \quad , \tag{2}$$

where T is the gas temperature, $\mathcal M$ is the reduced ion mass. As it has been shown recently /3/, for the negative ions with the low binding energies as well as for the complex negative ions, $\mathcal R_\sigma = 9.2~\overline{7}$, where $\overline{7}$ is the average size of the negative ion, an accuracy being of 20-30% at the thermal collision energies. Taking this into account the formula (3) can be written as:

$$k = \frac{7 \cdot 10^{-6}}{\sqrt{T \mu \, \mathcal{E}_{\alpha}}} \quad , \quad \frac{sm^3}{sec}$$
 (3).

Here T is the temperature in Kelvin degrees, $\mathcal M$ is the reduced mass in atomic mass units, and $\mathcal E_a$ is the electron binding energy of the negative ion in eV. In Table I the experimental results /4-7/ are compared with the calculations based on formula (3).

				Table I		
Comparison of	calculated	and ex	xperimental	results	for	the
rate constant	k.					

Colliding	\mathcal{E}_a , eV	µ,a.m.u.	k, 10 ⁻⁸ sm³/sec		
ions	-a,-c,-		experiment formula (3)		
CC1 ⁺ ₂ + C1 ⁻	3.62	25	4.5 ± 0.5 /4/ 4.2		
CC1 ⁺ ₃ + C1 ⁻	3.62	27	4.5 ⁺ 0.5 /4/ 4.0		
CCl ₂ F ⁺ + Cl ⁻	3.62	26	4.1 + 0.4 /4/ 4.1		
CCl ₂ F ₂ ⁺ +Cl ⁻	3.62	27	4.1 + 0.4 /4/ 4.2		
$SF_3^+ + SF_5^-$	2,8	52	4.0 ± 0.5 /5/ 3.3		
sf ⁴ + sf ² 6	0.6	68	3.9 ± 0.5 /5/ 6.4		
H ₃ 0+.(H ₂ 0) ₃ +C1	3.62	24	4.8 ± 0.6 /6/ 4.3		
$NH_4^+ \cdot (NH_3)_2 + C1^-$	3.62	21	7.9 ± 1.0 /6/ 4.6		
NH ₄ , (NH ₃) ₂ +NO ₂	2.4	24	4.9 ± 0.6/6/ 5.2		
H ₃ 0+ (H ₂ 0) ₃ +NO ₃	3.7	33	5.5 ± 1.0 /7/ 3.6		
H_30^+ . $(H_20)_3 + N0_3^-$. $(HN0_3)$	3.7	46	5.7 [±] 1.0 /7/ 3.1		
H ₃ 0+ ,H ₂ 0) ₃ + NO ₃ . (HNO ₃) ₃	3.7	57	4.5 /7/ 2.8		

REFERENCES

- 1/ A.A.Radtsig, B.M.Smirnov, JETP, 60, 521 (1970).
- /2/ A.A.Radtsig, B.M.Smirnov, Teplofizika vysokikh temperatur, 10, 29 (1972).
- /3/ B.M.Smirnov, "Negative Ions" (McGrow Hill Inc., 1981).
- /4/ D.Smith, M.J.Church, Int.J.Mass.Spectrom.Ion Phys., 19, 185 (1976).
- /5/ M.J.Church, D.Smith, Int.J.Mass.Spectrom.Ion Phys., 23, 137 (1977).
- /6/ D.Smith, M.J.Church, T.M.Miller, J.Chem.Phys., 68, 1224 (1978).
- /7/ D.Smith, N.G.Adams, M.J.Church, Planet.Space Sci., 24, 697 (1978).