REACTIONS of XEF₂, FLUORINE ATOMS AND MOLECULAR FLUORINE WITH SILICON AND SIO₂ SURFACES Dale E. Ibbotson John A. Mucha Daniel L. Flamm Vincent M. Donnelly Bell Laboratories Murray Hill, NJ 07974 #### ABSTRACT Silicon gasification by XeF₂ is compared with F-atom etching under conditions typical of those used in plasma etching. Temperatures ranged from -15 °C to 360 °C and XeF₂ pressures were between 0.05 Torr and 2 Torr. Silicon etching by XeF₂ shows a sharply different etch-rate/temperature dependence than the Si/F or Si/F₂ reaction systems; there is no detectible reaction between XeF₂ and SiO₂ in contrast to the F-atom/SiO₂ system. Etch rates for XeF₂ increase sub-linearly with pressure greater than or equal to 0.5 Torr, also in contrast to analogous F-atom reactions. These data indicate that physisorption can limit silicon etching by XeF₂ and show that basic studies which use XeF₂ as a compound for modeling the etching of silicon and SiO₂ by F-atoms should be interpreted with caution since these two reagants do not exhibit similar behavior. #### INTRODUCTION Fluorine-containing gases and gas mixtures have been widely used for plasma etching silicon and its compounds. Fluorine atoms are the main or sole silicon etchant in many plasmas and consequently the reactions of atomic fluorine with $\mathrm{Sil}^{1,2}$ and SiO_2^2 have been studied in some detail. Several researchers have proposed that XeF_2 reactions with Si and SiO_2 are essentially the same as those of F-atoms. Thus XeF_2 has been extensively used as a model compound in research on the basic mechanisms of plasma etching. The assumption that silicon attack by XeF₂ behaves the same as its interactions with F-atoms has been applied to isotropic etching^{4,5} and to ion-stimulated high vacuum beam studies^{5,6,7}. It was apparently based on three observations: (1) XeF₂, like F-atoms, rapidly and spontaneously etched silicon⁴, (2) Xe was not detected on the silicon surfaces in high vacuum Auger^{4,8} and XPS⁸ measurements and (3) chemisorbed fluoro-silicon species are efficiently gasified by ion bombardment. Although there was evidence of a wide disparity between the spontaneous reaction rate of XeF₂ with silicon and comparable etch rates of atomic fluorine⁹, the significance of this comparison was uncertain because the F-atom¹ and XeF₂ data^{4,5} were taken under drastically different conditions. Similarly, F and XeF₂ reactions with SiO₂ were believed equivalent. Early data showed that XeF₂ did not etch SiO₂ and it was assumed that the same result would apply to the reaction of F-atoms with SiO₂⁶. Subsequently when experiment showed that F-atoms spontaneously etch SiO₂, it was suggested that the measurements of XeF₂ interacting with SiO₂ may have been too insensitive to detect etching¹⁰, or that the apparent discrepancy might be explainable in terms of flux differences11. We report the interaction of XeF_2 with Si and SiO_2 , under the same circumstances previously used to investigate the kinetics of F-atom/Si and F_2/Si reactions. The data show that XeF_2 , is a poor analog for silicon etching by fluorine atoms under plasma etching conditions. ### EXPERIMENTAL The reactive flow apparatus used in this study was similar to that used in our previous F-atom studies¹. Oxide-masked silicon samples were bonded to the end of a 2.54 cm o.d. hard-coat anodized aluminum rod and positioned in-line with the wall of a 2.54 cm i.d. aluminum reaction cell. The reaction cell had five ports through which inlet and outlet tubes, a sapphire window, and the substrate holder were sealed with Viton or Kalrez o-rings. Part of the substrate holder that extended out of the reaction cell (22 cm) was heated electrically or cooled with a constant temperature bath to the desired temperature, while the rest of the cell was thermally insulated. A type-J thermocouple was inserted into a thermowell just under the sample to monitor substrate temperature which was varied between -17 and 360 °C. Pressures, between 0.05 and 2 Torr, were measured at the outlet of the reaction cell with a 10 Torr MKS capacitance manometer. Chemiluminescence, originating in the gas phase above the silicon samples, could be monitored through a 1 cm diameter sapphire window which faced the sample surface perpendicular to the flow-tube axis. A photomultiplier tube, equipped with a 350 nm long pass filter and lenses, was used to measure the broad band emission. Emission spectra were also monitored with an optical multichannel analyzer (OMA) to compare them with the spectra from F and F, etching^{2,12,13}. N-type (100) silicon wafers were patterned in a "checkerboard" arrangement of 10 KÅ thick oxide squares (5 mm per side) bounded by 285 μ wide Si stripes. Square samples (\approx 3x3 mm) were cleaved from the wafers, with 2 to 3 mm² of exposed Si. Etch rates were determined from the etch depth divided by etching time. Chemiluminescent emission was monitored to detect any induction period in etching caused by oxide or contaminant clearing during the initial stages of reaction. So long as the native oxide was removed and the sample was etched immediately afterwards, no induction period was observed. In contrast, no etching was observed when the native oxide remained. This suggests little or no etching of the oxide occurs, as confirmed by oxide thickness measurements (below). ### RESULTS AND DISCUSSSION Etch rates, measured as a function of substrate temperature below ≈ 0.5 Torr, were fit to a general form of the Arrhenius equation $$R_{\text{XeF}_2}(Si) = \nu_o \, n_{\text{XeF}_2} \, T^{\nu 2} \, \exp[-E/kT]$$. (1) This can be written more explicitly as $$\frac{R}{P}T^{1/2} = 9.65 \times 10^{18} \nu_o \exp[-E/kT]$$ (2) where R is the etch rate of Si in μ -min⁻¹, P is the pressure of XeF₂ in Torr, T is the substrate temperature (°K), E is the effective activation energy of the etching reaction (kcal-mole⁻¹), ν_0 is a pre-exponential factor and k is the Boltzmann constant. In converting from Eq. (1) to Eq. (2), we have made the assumption that the gas temperature and the substrate temperature are equal, since at these pressures the gaseous boundary layer above the sample is thick and should be thermally equilibrated with the substrate. In sharp contrast to previous studies of F-atoms etching silicon, Fig. 1 shows that an Arrhenius plot of the XeF₂ etch rate data (open circles) exhibits a complex behavior. Below 450 °K the etch rate decreases with increasing temperature; between 360 °K and 450 °K it reaches a minimum; and finally at higher temperatures it increases. Below 360 °K the Arrhenius plot is linear (bold line, positive slope) with a slope corresponding to an apparent negative activation energy of -3.2 kcal-mole⁻¹. The corresponding rate equation for the low temperature asymptote is $$R_1(XeF_2) = 1.90 \times 10^{-19} n_{XeF_2} T^{1/2} \exp[3.2/kT] \mu - min^{-1}$$ (3) The characteristics of XeF₂ etching Si are completely different from the reactions with F-atoms¹ or F₂¹³. The rate of reaction between Si and F-atoms increases exponentially with temperature, as shown by the dot-dashed line in Fig. 1, and has an activation energy of 2.5 kcal-mole⁻¹. F₂, which etches Si with a lower probability than F-atoms, also displays an Arrhenius dependence on temperature, and has a higher activation energy: E = 9.2 kcal-mole⁻¹. Although the F-atom and XeF₂ rates are equal near the minimum (XeF₂ etchrate versus T⁻¹) in Fig. 1 (\approx 410 °K), the XeF₂ etch rate is up to 40-fold greater elsewhere. The indicated linearity between etch rate and $n_{\rm XeF_2}$ was confirmed for several isotherms below \approx 0.5 Torr, but fails at or above this pressure. The contrast between XeF₂ and F-atom reactions is even more striking for SiO₂. After one hour at 300 °C and 2 Torr XeF₂ there is no detectible etching (< 1 Å-min⁻¹-Torr⁻¹ of SiO₂ [steam grown oxide on silicon]). The XeF_2 etch-rate/temperature dependence in Fig. 1 suggests two different rate-limiting mechanisms, depending on the substrate temperature. The weak, but negative temperature dependence at low temperatures suggests that weakly adsorbed XeF_2 is the precursor to etching. This layer would be depopulated as temperature is increased at constant pressure. The isothermal etch rate increases with increasing pressure of XeF_2 in this region. XeF₂ etches Si up to forty times faster than F-atoms at low temperature, even though it has more steric constraints because of its larger size. We attribute this to the weakly bound layer that allows a longer residence time for dissociation on the surface (e.g., the long residence time more than compensates for the exponential factor in the etch rate). This is consistent with the fact that XeF₂ is more polarizable than F-atoms or F₂ molecules, so that it should have larger heats of physisorption and condensation. Although the first bond dissociation energy of XeF₂¹⁴ (54-58 kcal-mole⁻¹) is larger than the bond dissociation energy of F₂ (37 kcal-mole⁻¹), bond distortion would be larger for XeF₂ in a physisorbed layer, leading to more efficient dissociative chemisorption. Evidently another reaction step dominates the reaction mechanism at temperatures above the rate minimum in Fig. 1 which may be direct dissociative adsorption of XeF2 on a mixture of SiFx (0 \leq x \leq 2). The activation energy in this region is larger than that for F-atoms. Assuming that this high temperature reaction does not contribute significantly at low temperature, the asymptotic slopes can be assigned to each of these two mechanisms and the rates separated. The high temperature asymptote (Fig. 1, bold line, negative slope) is obtained by subtracting the low temperature line from the overall rate above 380 °K and exhibits an activation energy of 6.1 kcal-mole $^{-1}$. The rate equation for this high temperature asymptote is $$R_{b}(XeF_{2}) = 9.26 \times 10^{-15} n_{XeF_{2}} T^{1/2} exp[-6.1/kT] \mu - min^{-1} . \tag{4}$$ The smooth curve through the data corresponds to the sum of Eqs. (3) and (4). From these results it is clear that the reactions of XeF₂ and F-atoms with Si are governed by different rate-limiting steps. Most likely the elementary rate-limiting steps for XeF₂ at room temperature involve dissociative chemisorption, and/or diffusion to sites that allow dissociation. The rates of these steps are probably sensitive to surface coverage (which may be constant as a saturated SiF₂ layer⁹), steric constraints on the orientation of a XeF₂ molecule which dissociates at a site, and the density of defects in the SiF₂ layer. By contrast, the temperature dependence of the F-atom/silicon reaction and accompanying chemiluminescence suggest one dominant kinetic limitation. The dependence of reaction rate on pressure at 296 °K and 558 °K (which have almost equal $\frac{R}{P}T^{\nu 2}$ exponential terms at low pressures in Fig. 1) were measured. At both temperatures the reaction rate increases linearly with pressure until 0.2 Torr, but increases sublinearly for pressures greater than or equal to 0.5 Torr. Although both reaction regimes exhibit a similar sublinear pressure dependence they probably are dominated by different mechanisms, as postulated above. In both cases adsorption may govern the kinetic limitation at high pressure. This simple mechanism provides a phenomenological understanding of the data and the role of XeF_2 adsorption in both temperature regimes; however, more experimentation would be needed to quantify these results and verify the proposed mechanisms. Note that this XeF_2 study is in sharp contrast with our F-atom studies where low secondary surface coverage is maintained across the range of temperature and pressure. Moreover, the rate equations (3) and (4) show some agreement with data from other studies done under totally different conditions. For instance if the low coverage $R_h(XeF_2)$ [Eq. (4)] is extrapolated to 50 °C, the reaction probability is 2×10^{-4} Si atoms removed per incident XeF_2 . This is in good agreement with the $4-14\times10^{-4}$ observed by Vasile at this temperature¹³ using low XeF_2 fluxes (0.01 ML-sec⁻¹) and coverage (we have multiplied Vasile's reaction probabilities¹⁵ for unsputtered Si(100) by two to convert them to our basis). Similarly the asymptote $R_i(XeF_2)$ at 300 °K corresponds to a probability of 0.013, which compares favorably with the value of 0.01 - 0.025 obtained by Winters and Coburn⁴ in the pressure regime 4×10^{-4} to 1.4×10^{-2} Torr. We therefore postulate that physisorption might have had a significant effect on rates observed at these intermediate pressures. The present interpretation seems to disagree with Auger^{4,8} and XPS⁸ measurements taken at low pressure, which show no Xe present on Si and SiO₂ surfaces. The absence of Xe and the presence of fluorine, on both Si and SiO₂ surfaces after XeF₂ exposure has been interpreted to mean that XeF₂ merely delivers F to the surface (molecular XeF₂ does not have any appreciable lifetime on the surface) so F and XeF₂ would behave similarly. Clearly this is not the case. The weakly absorbed XeF₂ inferred here would not be detected at low pressure, even far below room temperature⁸, but would be an important etchant source at higher pressures. In any case the temperature effects, rates and various activation energies strongly suggest that adsorption effects play an important role in the reaction of XeF₂ with silicon, but not with F-atoms. Chemiluminescence arising from the gas phase reaction of SiF_2 etch product with XeF_2 was observed. The spectrum is identical to those reported in our F-atom², SiF_2 ¹², and F_2 ¹³ studies, but unlike this previous work, the temperature dependence of the luminescent intensity, I_e , does not follow the etch rate in a simple manner. It is important to note that the SiF_2 product yield in XeF_2 is not directly linked to a simple etching mechanism as it is with Fatoms ¹ and F_2 ¹³. Earlier results showed that F-atoms were ≈ 100 times more efficient than F_2 in causing luminescence¹. Similarity between the energetics of F_2 -Si and XeF_2 -Si reactions suggests the possibility of a large efficiency difference in favor of F-atoms over XeF_2 . Since F-atom contamination of the XeF_2 gas phase is temperature-dependent, we postulate that the complex luminescence may be influenced by small F-atom concentrations. Another contributing factor could be sensitivity of the XeF₂ luminescent reaction to wall and gas temperatures. In any case, the complexity of this temperature-dependent luminescence underscores the previous conclusion that the Si-XeF₂ reaction is fundamentally different from comparable reactions involving F_2 and F-atoms. #### REFERENCES - 1. D. L. Flamm, V. M. Donnelly, J. A. Mucha, J. Appl. Phys., 52, 3633 (1981). - 2. V. M. Donnelly, D. L. Flamm, J. Appl. Phys., 51, 5273 (1980). - 3. D. L. Flamm, C. J. Mogab, E. R. Sklaver, J. Appl. Phys., 50, 6211 (1979). - 4. H. F. Winters, J. W. Coburn, Appl. Phys. Lett., 34, 70 (1979). - 5. U. Gerlach-Meyer, J. W. Coburn, E. Kay, Surface Sci., 103, 177 (1981). - 6. J. W. Coburn, H. F. Winters, J. Appl. Phys., 50, 3189 (1979). - 7. Y. Y. Tu, T. J. Chuang, H. F. Winters, Phys. Rev. B., 23, 823 (1981). - 8. T. J. Chuang, J. Appl. Phys., 51, 2614 (1980). - a) D. L. Flamm, V. M. Donnelly, Plasma Chem. Plasma Proc., 4, 317 (1981); b) D. L. Flamm, V. M. Donnelly, D. E. Ibbotson, J. Vac. Sci. Technol., B1, 23 (1983). - 10. M. J. Vasile, F. A. Stevie, J. Appl. Phys., 53, 3799 (1982). - 11. J. W. Coburn, Plasma Chem. Plasma Proc., 2, 1 (1982). - 12. J. A. Mucha, D. L. Flamm, V. M. Donnelly, J. Appl. Phys., 53, 4553 (1982). - J. A. Mucha, V. M. Donnelly, D. L. Flamm, L. M. Webb, J. Phys. Chem., 85, 3529 (1981). - 14. H. S. Johnston, R. Woolfolk, J. Chem. Phys., 41, 269 (1964). - M. J. Vasile, Extended Abstracts, 163rd Meeting Electrochem. Soc., San Fransisco (May, 1983). ## FIGURE CAPTION Fig. 1. Arrhenius plot of the etch rate of silicon normalized by the flux of XeF₂ (open circles) and F-atoms (dot-dashed line). Data were taken between 0.05 and 0.2 Torr. Asymptotic fits to the XeF₂ data are the bold lines and the smooth curve through the data is the sum of the asymptotic rates.