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Abstract: The warm plasma, generated by gliding arc discharge in vortex, with high electron 

density and non-equilibrium at atmospheric pressure is applied for synthesis of nano-titania 

catalysts. In this work, highly crystalline TiO2 photocatalysts are one-step synthesized from 

the precursor of titanium tetraisopropoxide (TTIP) with air as discharge gas. X-ray diffraction 

(XRD) characterizations confirms that crystal phase of the as-synthesized powders is 

dominated by anatase and the weight fraction reaches around 80%. Transmission electron 

microscopy (TEM) exhibits spherical morphology of TiO2 particles synthesized at air flow 

rate of 2 L/min. The lattices fringes of TiO2 particles are also observed clearly from high 

resolution TEM (HRTEM). The photocatalytic activities of H2 evolution for the synthesized 

TiO2 photocatalysts are investigated.  
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1. Introduction 

Titanium dioxide (TiO2), because of its nontoxicity, low 

cost, chemical stability, and strong photoactivity, has 

attracted tremendous attention for its potential applications 

in energy conversion and environmental pollution 

removal[1-4]. Generally, performance of TiO2 is closely 

related to characteristics of morphology, microstructure, 

crystalline phase and crystallinity of TiO2, which are 

determined by the prepared and processed techniques[5-8]. 

Therefore, the synthesized methods are of importance for 

properties of TiO2. 

Normally, solution-based sol–gel and chemical 

precipitation are the common techniques for synthesis TiO2 

[7, 9-10].  However, the main deficiency is that as-

synthesized products are frequently amorphous or low 

crystalline, which require additional heat treatments to 

induce crystallization. The hydrothermal method is widely 

employed to prepare the TiO2 of high crystallinity[11-12] 

and the drawbacks of it is complex conditions and time 

consuming of operation. In recently, the plasma synthesis 

of TiO2 powder has been received extensively interest. 

Thermal plasma synthesis can produce highly crystallized 

TiO2, but it suffers from the disadvantages of high energy 

consumption, complicated quenching systems and 

electrode corrosion[13-16]. Simultaneously, the cold 

plasmas at atmospheric pressure is provided with simple 

device structure and well avoids the high temperature[17-

18]. However, the as-synthesized TiO2 is usually 

amorphous and needs to further calcination to induce 

crystallization. Therefore, a warm plasma generated by 

gliding arc discharge, which combines the advantages of 

thermal plasma and cold plasma, is employed. arc 

discharge. 

The air gas flow enters reactor via tangential inlets to 

form vortex flow. This vortex flow drives the arc generated 

with the alternating current (AC) power of 41.6 kHz to 

gliding. Thus, a cylindrical vortex gliding arc plasma is 

formed. Because of its three dimensional  structure, it has 

larger plasma area and longer residence time of reactants 

[19-23]. Meanwhile, it  possess high electron density and 

high level of non- equilibrium (electron 

temperature greater than gas temperature)[20, 22, 24]. 

Therefore, it is appropriate for simple synthesis nano-

titania catalysts. In this work, TTIP aerosol as the precursor 

of TiO2 is carried by N2 gas with flow rate of 100 mL/min 

into the plasma area. Then, the precursors are rapidly 

oxidized into TiO2 powders and collected in the 

downstream of plasma. For the gliding arc discharge driven 

by gas flow, gas flow rate is a factor of great concern. 

Therefore, effect of the air flow rates on the characteristics 

of as-synthesized TiO2 is investigated. The physic-

chemical properties of as-synthesized TiO2 were 

characterized. The synthesized TiO2 samples are 

designated as S1, S2, and S3 corresponding to the Fair of 2 

L/min, 3 L/min, and 4 L/min with input power of 100 W, 

respectively.  

2. Results and discussions 

The waveforms of discharge voltage and current are 

shown in Figure 1A and B, respectively. The discharge 

voltage shows sinusoidal waveform for the 2 L/min and 4 

L/min. However, discharge current deviates from the 

sinusoidal waveform and manifests a triangle-like 

waveform. The photographs of the discharge are shown in 

Figure 1C and D. When the air flow is 2 L/min, the arc 

glides along the fringes of the grounded and powered 

electrode toward the direction of orange arrow in Figure 

1C. The appearance of discharge area is cylindrical. There 

has obvious colour distinction between combustion of 

TTIP and the plasma channels. A white colour area of the 

combustion of TTIP located in the centre of reactor and that 



is surrounded by the pale red arc column. When the air flow 
increases to 4 L/min, the  

 
 
Fig. 1. Waveforms of discharge (A) voltage and (B) current 

and corresponding discharge photographs of (C) 2 L/min 

and (D) 4 L/min with exposure time of 0.2 s under input 

power of 100 W. 

 

arc column is compressed toward the central by the gas 

flow from up to down. There gives rise to mixing between 

the central combustion of TTIP and arc column as shown 

in Figure 1D. 

The crystalline phase of synthesized TiO2 is analyzed 

by the X-ray diffraction (XRD). Figure 2A shows that 

anatase and rutile are observed in all three sample. The 

peaks of anatase phase (101), (004), (200), (105), (211), 

(204) and (116) appear, respectively. Peaks of rutile phase 

(110), (110) and (111) are also present. From the XRD 

patterns, weight fraction of the anatase fA is approximately 

80% as shown in Figure 2B. Fair have no obvious effect on 

the weight fraction of the anatase. Meanwhile, crystalline 

size dA of anatase tends to decrease with the increase of Fair. 

This is also related with the residence time of the particles 

of TiO2. At the large flow rate, TiO2 particles or clusters 

experience a rapid quenching process and have not enough 

time to aggregation.  

Figure. 2. XRD patterns (A) and the effect of the Fair on 

the fA and dA (B) of the S1, S2 and S3  

 

The morphology and lattices fringes of S1 sample are 

shown in Figure 3. Particles of S1 mainly manifest 

spherical morphology as shown in Figure 3A. The 

spherical morphology of S1 can be explained by the 

vapour-liquid-solid (VLS) mechanism. At the lower Fair, 

the droplets consisting of liquid TiO2  

 
Figure. 3. TEM image (A) and HRTEM image (B) of S1 

(lattice fringes in the inset). 

 

molecular or clusters first are formed from the TTIP vapour 

owing to the high temperature of arc channel which is 

higher than melting point of TiO2 (2143 K)[21, 26]. 

Subsequently, the TiO2 droplets are fast quenched and 

crystallize into the spherical particle; moreover, the large 

spherical particle is caused by mutual collision and 

agglomeration of small droplets. The lattices fringes of S1 

are shown in Figure 3B. Anatase and rutile crystal phases 

appear in S1. That is consistence with the XRD results. It 

is further indicated that synthesized TiO2 through gliding 

arc plasma with one-step exhibits the mixed crystal.  
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Figure. 4.  Photocatalytic activity (A) and H2 evolution 

rates (B) of S1, S2 and S3. 

 
Figure 4 illustrates the photocatalytic activities of as-

synthesized samples. It is obvious that the photocatalytic 

activities increase first and then decrease in the order of S1, 

S2 and S3. S2 shows the highest photocatalytic activities 

and H2 evolution rate. The reason may be as follows. With 

air flow increasing, the energy density and the residence 

time gradually decrease. On the one hand, decrease of 

energy density and the residence time will lead to a gradual 

decrease in particle size and increase in specific surface 

area of as-synthesized TiO2. that has positive effect on the 

photocatalytic activity. On the other hand, decrease of 

energy density and the residence time leads to gradual 

retention of the carbonaceous species on the surface of 

TiO2 particles caused by insufficient time and energy for 

complete oxidation. That has negative effect on the 

photocatalytic activity. Therefore, the highest 

photocatalytic activity of S2 is result of the balance of 

interaction of these two factors. 

In summary, highly crystalline TiO2 is one-step prepared 

from TTIP aerosol through a vortex gliding arc plasma. 

The as-synthesized TiO2 has a weight ratio of anatase to 

rutile of approximately 80/20. The morphology of S1 is 

dominated by the spherical and lattice fringes of anatase 

and rutile are all observed in HRTEM. Photocatalytic 
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activities of H2 evolution manifest increase first and then 

decrease. 
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