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Abstract: Plasma processes demand many external parameters to be tuned. For the better 

tuning, process data of plasma CVD of hydrogenated amorphous silicon films is analysed by 

two methods: principal component analysis and sparse principal component analysis. These 

analyses are useful not only for identifying key external parameters and suggesting better 

experimental conditions, but also for giving predictive insights into experimental results. 
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1. Introduction 

Hydrogenated amorphous silicon (a-Si:H) films are 

mostly produced by a plasma enhanced chemical vapor 

deposition (PECVD) method and used for fabricating 

crystalline Si solar cells as well as Si thin film solar cells. 

The current highest efficiency of a-Si:H single junction 

solar cells in the world is 10.2% [1, 2]. The advantages of 

a-Si:H solar cells include flexibility and low production 

cost, while they have one major drawback, light-induced 

degradation. Upon light exposure, a-Si:H solar cells 

experience 20-30% drop in conversion efficiency [3]. In 

our laboratory, over 500 a-Si:H cells have been produced 

and their conversion efficiency at the initial state and 

stabilized state after light exposure have been measured. In 

the previous studies [4], we have found correlation 

between SiH2 bond density in films and light-induced 

degradation, and have successfully reduced the efficiency 

drop down to 2.4% by using a cluster elimination filter and 

achieved 9.1% stabilized efficiency. 

In general, plasma processes demand many external 

parameters to be tuned via trial-and-error, and the number 

of tuning parameters can be enormous in some practical 

cases. Physical and chemical parameters of reactive plasma 

in a reactor and products also have many characteristics. In 

such cases, data-based statistical or machine learning 

approach offers a novel way for tuning plasma processes in 

a short period. 

Here, our plasma CVD process data of a-Si:H  films is 

analysed by principal component analysis (PCA) [5, 6] and 

a new version of PCA called sparse principal component 

analysis (SPCA) [6]. 

 

2. Methods 

2.1 Film Deposition Process 
First, we explain briefly the experimental setup used for 

the film deposition process [4,7]. Figure 1 shows our 

experimental setup. Our plasma CVD reactor employs a 

multi-hollow electrode, frequently together with a cluster 

eliminating filter. The external parameters are the SiH4 

flow rate, H2 flow rate, substrate temperature, gas pressure, 

film thickness, RF power, RF frequency, distance between 

electrode and substrate, presence/absence and type of the 

cluster eliminating filter, presence/absence of a 100 mesh, 

and type of multi-hollow electrode. The last three 

parameters are discrete, and the rest are continuous. Under 

each experiment conditions one film was deposited, and 

then the film was employed to fabricate16 or 7 solar cells. 

The rows of Table 1 are features of cell characteristics used 

for PCA and SPCA. The dataset was pre-processed and the 

data of failed cells was removed. 

 

 
Fig. 1. Plasma CVD reactor of a-Si:H film deposition. 

 

2.2 PCA 

PCA is a method of linear transformation of high 

dimensional data. It transforms axes of data to new axes 

called principal components (PC1, PC2, …). PCs remain 

orthogonal and numbered in descending order of data 

variance along the axes. For example, if a shape of data is 

bread-like in 3D space, the variance along PC1 is very high, 

while ones along PC2 and PC3 are small. In such cases, we 

may ignore PC2 and PC3, and regard the data as one-

dimensional. In this way, PCA can be used for dimensional 

reduction. 

 

2.3 SPCA 

SPCA is a family of PCA. The word “sparse” means 

“mostly zero”. For example, consider a linear combination 

𝑎0𝑥0 + 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛  and if the coefficients 

𝑎0, 𝑎1…𝑎𝑛 are sparse, that means only a small number of 



 

 

them are non-zero. SPCA gives sparse estimations of PCs. 

This is helpful when you are trying to interpret principal 

components. Sparsity of loadings can be controlled by 

changing a regularization parameter. 

For PCA and SPCA, an open-source programming 

package of Python called scikit-learn is used [8]. 

 

3. Results and Discussion 

Figure 2 shows the Eigenvalues of the normal PCs. Each 

of the first three components has an eigenvalues more than 

1 and their sum is 91% of all variation of the data. The right 

side of Table 1 shows the loadings of the SPCA’s 

components. PC1 has high correlation with FFinitial, 

𝜂stabilized, and “Degradation Ratio”. Thus, PC1 is interpreted 

as the film performance axis as a solar cell. PC2 has high 

correlation with 𝜂initial , currents, and small correlation with 

“Degradation Ratio”, therefore PC2 is the initial 

performance axis. PC3 is the voltage related axis.  Figure 

3 shows PC1 distributions against four external parameters. 

These results show that, the cluster eliminating filter, SiH4 

flow rate, reactor pressure, and distance between substrate 

and electrode play key roles in determining the conversion 

efficiency of a-Si:H solar cells. From the viewpoint of 

physical mechanisms, these four parameters are reasonable 

as follows. First, clusters contribute mainly to SiH2 bond 

formation in films and tend to enhance the light induced-

degradation. The cluster eliminating filter reduces this 

contribution and hence PC1 depends on the filter type as in 

Fig. 3(a). Note that “filter type 0” is “w/o filter” and the 

rest numbers correspond to fineness of filter. Secondly, the 

SiH4 flow rate is inversely proportional to the gas residence 

time in the plasma region, thus the cluster growth rate 

decreases with increasing the flow rate and hence PC1 

depends on the SiH4 flow rate as in Fig. 3(b). Thirdly, the 

distance between substrate and electrode affects cluster 

growth rate, leading to the results in Fig. 3(c). Finally, the 

pressure play at least two major roles: 1) the higher 

pressure gives the longer gas residence time leading to the 

faster growth of clusters, and 2) the higher pressures brings 

about the less diffusive transport of clusters to the substrate 

set in the upstream region. According to the balance 

between these two reverse effects, there is an appropriate 

pressure to obtain the highest PC1.  

Based on these results, we have designed new 

experiments focusing on the SiH4 flow rate dependence [9]. 

SiH2 bond density in a-Si:H films nonlinearly decreases 

with increasing the SiH4 flow rate. Eventually, the 

experiments realized a lower SiH2 bond density  than 

previous ones. It should be noted that a-Si:H films with the 

lower SiH2 bond density tends to show lower light-induced 

degradation.  

PCA and SPCA analyses are useful not only for 

identifying key external parameters and suggesting better 

experimental conditions, but also for giving new insights 

into experimental results. 

 
Fig. 2. Eigenvalues of normal PCA’s components. 

 

Table 1. Features of cell data used for PCA/SPCA and 

loadings of PCs of SPCA components. 
 Feature PC1 PC2 PC3 

Y0 Jsc initial 0 0.616 0 

Y1 Voc initial 0 0 -0.704 

Y2 FF initial 0 0.128 0 

Y3 𝜂 initial 0 0.626 0 

Y4 Jsc stabilized 0 0.427 0.083 

Y5 Voc stabilized 0 0 -0.705 

Y6 FF stabilized 0.654 0 0 

Y7 𝜂 stabilized 0.591 0 0 

Y8 Degradation Ratio -0.471 0.175 0 

 

 
Fig. 3. Box plots showing changes of distributions regards 

to varying specific external parameters along PC1 obtained 

with SPCA. Dots represent data points. Each x-axis is (a) 

filter type, (b) silane flow rate, (c) distance between 

electrode-substrate, (d) pressure of reactor respectively. 
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