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Abstract: A method for exploiting stoichiometry in chemically reacting flows, as 

previously applied to porous media [6,7] is put in the framework of plasma physics. By 

taking linear combinations of the governing conservation laws, the original system is 

transformed to a new, equivalent system. Where several differential equations become 

homogeneous. This explicitly captures conserved quantities, and may allow for application 

of simpler discretization schemes to part of the system without loss of accuracy. 
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1. Introduction 
Renewable forms of electricity generation have the 

property that they are not always available. Moreover, not 

all energy is consumed as electricity. Traditional 

generation methods, like the combustion of fossil fuels, 

can assist to close the gap between supply and demand. 

However, these methods are polluting, which is 

detrimental to the environment.  

An alternative is to spend excess electricity produced 

from renewable sources to decompose CO2 into CO. The 

produced CO can be used as a base ingredient for the 

production of carbon-based fuels via the Fischer-Tropsch 

process [1]. Such fuels present a fully carbon-neutral 

storage medium for energy, compatible with existing 

infrastructure. 

A promising method for the decomposition of CO2 is a 

microwave plasma reactor.  Additionally processes such 

as vibrational laddering could play a role in the 

dissociation  [1,2]. The dissociation fraction of CO2 with 

microwave plasmas at time of writing varies; 9% [3], 37% 

[4]. Energy efficiencies of 23% have been achieved [4]. 

One of the tools for optimizing dissociation fraction and 

efficiency, and gaining further insight in the 

decomposition of CO2 by microwave plasmas is 

numerical simulation. 

However, a fully resolved  numerical simulation of such a 

system is challenging. The complex reaction mechanisms, 

stiff equations and high dimensionality present a 

challenge even on modern, high-end hardware.  

 

Here a transformation of the underlying system of 

equations is presented. By combining the governing 

conservation laws, a new set of equations is obtained with 

explicit species conservation built in. This transformation 

eliminates several source terms, as a result part of the new 

system can be exploited with simpler discretization 

schemes. The resulting system could then be solved by a 

method similar to Gummel iteration [5].  

Furthermore if the transport operator is linear, the 

transformation leads to a partial decoupling of the 

underlying system of differential equations. Additionally 

there exist special cases in which transformed densities 

are constant altogether. These effects may result in more 

favorable numerical properties.  

Here the method is illustrated for an argon case, however 

it can be generalized in a straightforward manner.  

2. Conservation laws 
Consider a system consisting of the Ar atom, Ar

+
 ion and 

the electron e
-
. Here only one forward-backward reaction 

set is needed (1): 
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The generic form of  a set of the conservation laws reads: 
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Here   is a vector of species number densities, and   ⃗⃗  is a 

matrix containing the components of the fluxes. For the 

argon system these are, (3): 
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The quantity   in equation (2) represents the 

stoichiometric matrix and   the rate vector. For the argon 

case these are given by (4); 
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The matrix   can be interpreted as: ”for every Ar
+
 

produced, one Ar is consumed and one e
-
 is released”. 

Since there is only one reaction, the vector   is a vector 

of size 1. 

For clarity of presentation the 1D conservation equation is 

examined here (5): 
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3. Stoichiometric transformation 
The idea is to take linear combinations of the equations 

(5), in order to capture conserved quantities in the 

resulting set of equations. To do this stoichiometry is 

utilized. In the argon system with three species present 

(Ar
+
, Ar and e

-
), and one reaction. Two “building blocks” 

can be identified from which the remaining species can be 

formed. Such building blocks would have the property 

that they cannot be created, nor destroyed in chemical 

reactions. One way to exploit this concept for the argon 

system would be to take linear combinations in the 

following way: 

 
 ( 

   
    )

  
 
 ( 

   
    ) 

  
  ,            (6a) 

 ( 
   

    )

  
 
 ( 

   
    )

  
  ,            (6b) 

    

  
 
     

  
   ( ).   (6c) 

Note that two source terms are 0, indicating no production 

or destruction. The first equation (6a) indicates 

conservation of the amount of argon (        ), the 

second (6b) indicates that charge  (        ) cannot 

be produced or destroyed. Here   is the elementary 

charge.  In a way the transformed variables, the total 

amount of argon, and the total amount of charge can be 

seen as fundamental building blocks to construct the 

remaining species; argon.  

 

To construct such a linear combination in general, a 

method previously utilized in the context of porous media 

[6,7] is applied to plasmas. Here a closer look is taken at 

the stoichiometry given by the matrix   in equation (4). 

From this, two other matrices are constructed,    and     
The matrix    contains all linearly independent columns 

of   and    is an orthogonal complement to   . I.e., the 

columns of    are orthogonal to the columns of   . 
Additionally    must be constructed such that its columns 

are also linearly independent. However, note that for a 

general reaction network    and    are not unique. For 

the argon example, a possible set is given by (7): 
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Furthermore, also a matrix   is defined, such that 

     . Matrix   constructs   from the linearly 

independent columns   . The idea is to project the 

original densities   and fluxes   on a subspace, and a 

subspace orthogonal to that subspace. To do this the 

equations (5) are multiplied from the left by the matrices  
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and by 
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respectively. Here       and        are invertible, since 

the columns of both    and    are linearly independent. 

The matrices (8) and (9) can be viewed as a special case 

of the Moore-Penrose inverse for matrices    and   . 

Namely the case where    and    have full column rank.  

 

Note that the term    can be written as     , and by 

definition of the orthogonal complement; 
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It then follows that the right hand side of equation (5) 

reduces to: 
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for the first set, and 
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for the second set. Additionally the new, transformed 

densities are introduced, the first set and second set 

become: 
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A set analogous to equations (13a) and (13b) is defined 

for the fluxes.  

 

Then the left-multiplication of equation (5) with (8) and 

(9) respectively  yields: 
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Here [  ( )]  indicates the  -component of [  ( )]. 

The transformed densities and fluxes are given by; 
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and the corresponding   set: 
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The resulting system, equations (14), is unfortunately not 

as clear in terms of the physical insight as (6). However, it 

does have the benefit that the reverse transformation from 

  and   is guaranteed to exist, and is of the simple form 

[6]: 
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for the densities. For the fluxes a similar transformation 

holds: 
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Alternatively a linear combination could be obtained in 

terms of a matrix   previously studied in the specific 

context of LTE-plasmas [8]: 
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with the transformation 
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which may be utilized to gain more favorable properties. 

Furthermore, since  the orthogonal complement     is not 

unique, there may be a specific construction that allows 

for more physical, or other properties to be incorporated. 

As opposed to applying a more generic transformation in 

terms of equations (8) and (9). 

 

4. Applications of transformed system 
The benefit of the transformed system (12) is that 

conservation of “building blocks” is explicitly 

incorporated into the structure of the differential 

equations.  

Furthermore, the absence of a source term allows for the 

use of simpler discretization schemes for several 

equations. Such as the homogeneous flux scheme, instead 

of the more general complete flux scheme [9,10]. This 

may lead to less overhead when solving the system 

numerically, while still taking the “source term” into 

account exactly in the  -set of equations, equation (14a). 

The entire set of   and   equations could be solved by a 

method similar to Gummel iteration [5]. By first solving 

the  -set, and substituting the corresponding number 

densities in the set of  -equations. Then the result of the 

 -part is then substituted back into the  -equations, and 

so on until convergence is achieved. 

By first solving the homogeneous part, substituting the 

result in the inhomogeneous part and solving the second 

set. Then the inhomogeneous result is substituted back 

into the homogeneous set and so on until convergence is 

achieved. 

 

Additionally if the fluxes   are linear functions of the 

species number densities  , then the homogeneous 

equations in (14a) are also decoupled.  

 

Finally, by taking specific linear combinations one may 

exploit quantities that not only have no source, but are 

constant as well. For example, if specific boundary 

conditions are imposed on equations (6) such that a closed 

system is obtained, it follows that: 
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indicating conservation of charge. Furthermore, in such a 

case: 

 

              ,     (22) 

 

as there would be no gain/loss of argon atoms.  

 

5. Outlook 
A further step could be to apply a time-scale analysis 

using a Schur-decomposition analysis, similar to [11]. 

Here the timescales of the reactions present in the system 

are investigated. However, such analysis should be 

applied to the transformed system. The idea of the 

resulting time scale analysis is to replace the fast reactions 

by an equilibrium condition. Hence some differential 

equations may be replaceable by an algebraic equilibrium 

condition.  

 

6. Conclusions 
A method previously applied to porous media has been 

examined for computational plasma physics [6,7]. Linear 

combinations of the governing conservation equations are 

taken, such that several components of the original system 

have their source term eliminated. This yields explicit 

expressions for conserved quantities. Furthermore, this 

also allows for (simpler) numerical schemes to be applied 

without loss of accuracy. 

 

In the case of a linear flux, partial decoupling of the 

equations can also be obtained. In special cases the linear 

combinations may even lead to (transformed) species that 

are constant in space and time. An additional method for 

taking linear combinations, and a method to analyze the 

resulting system based on a timescales is outlined. 
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