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Abstract: We have used the 630nm 
3
P2 

1
D2 electric-dipole forbidden transition to 

determine the ground state O (
3
P) density and translational temperature in a pure O2 DC 

discharge in a borosilicate tube.  Using Cavity RingDown Spectroscopy (CRDS) we were 

able to enhance the very weak absorption. From the absorption baseline we were also able 

to determine the O
-
 ion density.   
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1. Introduction 

Pure O2 plasma is commonly studied plasma which has 

applications in etching industries and plasma medicine. O 

atoms are a key species formed in O2 plasma, especially 

for surface processing. It is therefore very important to 

know the absolute density of O (
3
P) to test models of O2 

plasma kinetics. Measurements by Two-photon 

Absorption Laser Induced Fluorescence (TALIF) 

calibrated against Xe [1], and actinometry with Ar [2] 

were inconclusive because of their indirect and complex 

nature (non-linear dependency on multiple parameters). 

The VUV O atom absorption lines at ~130nm cannot be 

used in many circumstances because measurements are 

often conducted under optically thick conditions. 

Hence, we have used the weak electric dipole forbidden 

630nm 
3
P2 

1
D2 transition. But for our system the 

absorption is very weak (~10
-5

) and so we needed cavity 

enhancement to increase signal-noise ratio [3]. In this 

case we used a cw tunable diode laser (Toptica DL100L, 

#1 in fig.1) to do Cavity RingDown Spectroscopy 

(CRDS). 

 

 
2. Experimental setup 

The positive column discharge (current 10-40 mA) in 

pure O2 (0.2-7.5Torr) was established in a 56 cm double-

walled (for constant wall temperature) borosilicate tube.  

 

 
Figure1: Experimental setup for CRDS 

 

The tube ends were enclosed by concave mirrors (#3 in 

fig.1) with high reflectivity (>99.995%) at 630nm located 

within adjustable mounts. The 1
st
 order diffracted beam 

from an acousto-optic modulator (#2 in fig.1) is injected 

into the cavity, and switched off after the signal reaches a 

threshold. The position of the first mirror is constantly 

scanned by a piezo actuator, to allow excitation of 

individual longitudinal modes of the cavity. The 

transmitted signal was detected with an amplified 

photodiode. The 0
th
 order beam is used to measure the 

wavelength with a wavelength meter. 

 

 

3. Results and discussion 

For single RingDown event the signal decays 

exponentially. From the exponential decay, we determine 

the RingDown time. 30-100 averages were taken for each 

wavelength point. 
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Figure2: CRDS spectrum at 1 Torr 40 mA with Gaussian 

fit 

 

The absorption coefficient, A is calculated from the decay 

time in vacuum (0) and with plasma (), from:   
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where c is the speed of light. An example absorption 

spectrum is shown in Fig. 2, along with a Gaussian fit. 

The integrated area gives the O atom density (in the 
3
P2 

level), the Doppler width gives the translational 

temperature. The O atom line lies on top of the O
-
 

photodetachment continuum, allowing us to also deduce 

the O
-
 negative ion density. 

 

4. Results and discussion 

The variation of the absolute oxygen atom density with 

pressure and discharge current is shown in Fig 3.  
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Figure3: Absolute oxygen atom density as a function of 

pressure for different currents  

 

The translational temperature of O atoms is shown in Fig 

4. It consistently increases with pressure and current. 

These measurements are in good agreement with the O2 

b-state rotational temperature (from optical emission) and 

the O atom translational temperature determined by High-

Resolution TALIF. Hence the gas particles in these 

conditions can be assumed in thermal equilibrium. 
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Fig. 4: Oxygen atom translational temperature. 

 

The total gas density, N, can then be deduced from the 

pressure and the temperature allowing the mole-fraction, 

[O(
3
P)]/N, to be calculated, as plotted in Fig 5. It 

increases almost linearly with current at all pressures 

studied, and passes through a peak at around 1 Torr 

pressure. At these pressures gas phase recombination is 

small, so that oxygen atoms are predominantly lost by 

recombination at the borosilicate glass tube walls. At 

pressures lower than 1 Torr the surface recombination 

probability is strongly increased due to by energetic ion 

bombardment [ref J P Booth et al. paper, submitted 

recently in PSST], leading to the observed sharp drop in 

O/N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Mole fraction, O/N ratio as a function of pressure 

for different currents 

 

The O
-
 negative ion density is shown in Fig. 6. This is 

only a small fraction of the total gas density (<.001%), 

and comparable to the electron density. It passes through 

a minimum around 1 Torr, due to its destruction by 

associative detachment reactions with oxygen atoms. 

 

 
Figure6: O

-
 (negative oxygen ion) density as a function 

of pressure and current. 
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5. Conclusion 

CRDS is a powerful direct method to measure atomic 

density in oxygen plasmas.  It also provides accurate 

measurements of the gas temperature, as well as the O
-
 

negative ion density. These parameters are which are key 

for understanding and modeling of O2 plasmas. 
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