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Abstract: This work presents a learning-based model predictive control (LB-MPC) strategy for atmospheric-
pressure plasma jets (APPJs) under uncertainty. The controller is designed such that it delivers a uniform dose 
while satisfying constraints that aim to mimic restrictions that ensure patient safety and comfort. Online learning 
from the data is incorporated via Gaussian process regression, thus improving the accuracy of the model. 
Finally, the power of this approach is experimentally demonstrated on an APPJ set-up. 
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Atmospheric Pressure Plasma Jets (APPJs) are a class of 

cold atmospheric plasma devices with applications ranging 
from materials processing to medical applications. However, 
channeling this potential to practical use is extremely 
challenging due to their intrinsic variability and nonlinear 
behavior. For example, APPJs are subject to significant run-
to-run variations, even when the experimental conditions are 
similar [1], while also exhibiting very steep axial and radial 
gradients in both temperature and species concentrations [2]. 
Consequently, for the effective use of such devices, it is 
imperative to be able to control their behavior in an 
automated manner. A useful tool to tackle such a problem is 
Model Predictive Control (MPC), which is an optimization-
based control strategy able to handle multivariable systems 
subject to constraints [3], [4]. Even so, MPC is reliant on a 
good system model, which is generally unavailable for 
APPJs. In addition, uncertainties and disturbances in the 
plasma may cause it to exceed specified operating tolerances. 
These include, for example, temperature constraints put in 
place to avoid tissue damage and associated negative effects 
on patient safety and comfort in plasma medicine 
applications [5]. As a result, uncertainties and inaccuracies in 
the plasma, combined with exogenous disturbances, may 
compromise the constraint handling ability of MPC. This can 
be detrimental to safe and reproducible system operation. 

To this end, we propose a learning-based MPC (LB-
MPC) control strategy, which accounts for the effect of the 
uncertainties in order to ensure constraint satisfaction up to a 
user-defined level. Firstly, we formulate the problem with the 
objective of delivering a specified dose in the presence of 
constraints that mimic restrictions put in place to ensure 
patient safety and comfort. Secondly, we extend the MPC 
framework with a Bayesian learning feature to reduce model 
uncertainty in plasma dynamics and thus enhance the 
accuracy of the predictions. Specifically, Gaussian process 
(GP) regression lends itself particularly well for such an  

 

application, since it naturally defines the mean and variance 
of the predictions. This provision allows incorporation of the 
uncertainty of model predictions, and, by extension, to 
account for their effects [6]. Thirdly, we design the controller 
such that it has the ability to estimate and counteract 
deterministic disturbances such as change in tip-to-surface 
separation distance, which may not be accounted for by GP. 

We illustrate the power of this approach in simulation 
and experiments for a kHz-excited APPJ in He described in 
[4]. We demonstrate that online learning improves the quality 
of model predictions and thus the performance of the 
controller. Deviations between the measured APPJ outputs 
(i.e., plant data) and the model along with previous APPJ 
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Figure 1: Prediction of test data using GP regression. The 
blue line indicates the data to be predicted, while the red line 
indicates the GP predictions.  The shaded gray area is the 
99% confidence interval of the GP predictions. 



inputs are used to train a GP regression algorithm in order to 
predict the plant-model mismatch. An independent data-set 
is then used to test the predictive capability of GP, as shown 
in Figure 1.  In addition, GP naturally provides uncertainty 
bounds in the form of confidence intervals, which enable the 
controller to operate with enough safety margin so that it 
minimizes constraint violation. The choice of the degree of 
constraint violation is typically left to the user, who can either 
require that the constraints are satisfied at all times, or can 
define an acceptable level of constraint violation. This is 
verified by performing Monte Carlo simulations as shown in 
Figure 2. The goal is to follow a set-point (from 𝑥 = 5 to 𝑥 =
2) on substrate temperature that requires operation at the 
edges of the allowed region, while accounting for the effect 
of the uncertainties. Dose can therefore be delivered 
uniformly without exceeding the constraints set on 
temperature by more than the desired level, even when 
operation close to the constraints is required. Clearly, when 
the constraints have to be satisfied for all uncertainty 
realizations the controller ends up being more conservative, 
leading to worse performance than when some constraint 
violation can be tolerated. In both cases, however, GP does a 
good job in predicting the uncertainty, as illustrated by the 
fact that the system can track a set-point without any offset 
even in the presence of plant-model mismatch. 
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Figure 2: Evolution of the closed-loop states under 100 
uncertainty realizations when the system is guaranteed to 
remain within the constraints (green) vs. when it is allowed 
to violate the constraints up to a pre-defined probability (red). 
The inset shows a more-detailed view of the operation close 
to the constraints. 


